1.Java培训班的课程一般都学习什么内容呢?
2.Apache Ranger整合Hadoop、Hive、Spark实现权限管理
3.数据资产管理平台体系拆解(4):元数据管理
Java培训班的课程一般都学习什么内容呢?
阶段一-微服务课程免费下载链接:/s/cR1oZ_elMd8y1TyHg0rA
提取码:fqy6微服务是对于微信公众平台提供的辅助管理平台,强化了微信公众号的互动营销推广与客户关系维护功能。微服务平台开发了为商家定制的“个性化管理、营销推广、历史类型源码查询客户关系管理、会员卡管理”等几个重要的运营管理模块。
Apache Ranger整合Hadoop、Hive、Spark实现权限管理
在先前的文章《说说PB级生产上重要的Spark 3.x性能优化方向》中,提到了业务人员在处理数据时可能因误操作而造成数据损坏的问题。在许多场景中,数仓需要直接开放给业务分析人员使用,他们经常执行SQL进行场景分析和验证。为此,可以提供一个WebUI供他们使用,如Hue。然而,由于数仓数据庞大,不可能全部开放给业务人员,因此对外供数时必须提供权限控制。
权限控制方面,CDH上提供的Sentry是一个不错的选择,它基于RBAC进行授权,可以针对库、表等设置不同用户权限。CM的加入使得Sentry的配置变得简单,但Sentry在用户管理方面较为繁琐,且项目已进入Apache Attic,因此选择Sentry并非明智之举。
实际上,许多公司的生产环境都是外网隔离的,特别是涉及敏感数据的小猴公司。开发、运维人员进入生产环境需要经过严格的php源码颜色对应校验,接入公司的生产专用网络,并通过堡垒机,任何人都无法导出数据,且每个操作都有审计跟踪。尽管如此,业务人员仍需开放访问,尽管他们通过专门的跳板机访问,但依然存在风险。
Apache Ranger只要有大数据集群的地方就都需要。本文解决了Ranger不支持Spark SQL的问题,实现了库、表、行、列级别的细粒度权限控制。由于官方文档和百度文档有限,本文将分享相关信息,希望能帮助到大家。
Apache Ranger是一个用于Hadoop平台上的权限框架,旨在服务于整个大数据生态圈。随着Hadoop在数据湖领域方案的成熟,对数据权限控制的要求也日益提高。Ranger现在提供了更多对大数据生态组件的支持。
Hadoop中的数据访问多样化,如存储在HDFS的数据可以被Hive、Spark或Presto访问。这么多组件访问数据,若不进行集中权限控制,数据安全性将面临严重问题。因此,大数据平台通常需要一个集中管理权限的组件或框架,Ranger正是这样的组件。
当前Ranger版本为2.1,官方提供的版本为2.1。编译测试基于Ranger 2.1版本。官方未提供安装包,mc指令connect源码需要手动下载Ranger源码包进行编译。编译环境要求提前安装,具体可参考官方网站。
编译成功后,将tar.gz包拷贝到本地。部署Ranger Admin的安装方式与Ranger类似:安装Ranger admin、创建ranger用户并设置密码、上传解压安装包、拷贝MySQL JDBC库、在MySQL中创建ranger库和用户、初始化配置、初始化Ranger admin。若显示成功,则表示初始化成功。在MySQL中可以看到ranger数据库中已创建大量表。
配置Ranger设置数据库密码、配置环境变量、启动Ranger admin访问web UI。登录后,主界面显示如下。点击右上角的“Swith to latest UI”可以切换到最新的UI展示。若安装过程中出现问题,请检查日志。
安装Ranger usersync配置admin认证模式。Ranger中admin的认证方式有三种:Unix、Active Directory、Kerberos。此处使用Unix方式进行认证,意味着后续Ranger admin登录会按照Linux中的认证同步。上传解压Ranger usersync组件、修改初始化配置、初始化配置、配置Linux系统用户组同步配置环境变量、启动usersync服务、修改Ranger admin的php源码怎么输出认证方式、重新启动Ranger admin。在ranger-admin中可以看到所有Linux中的所有用户。
安装Ranger HDFS插件。注意,HDFS插件需要安装在NameNode对应的节点中,YARN插件需要安装在ResourceManager对应的节点上。解压HDFS插件、初始化配置、启用hdfs插件。Ranger HDFS插件会将当前的配置文件保存备份。可以查看ranger对这些配置文件的更改。
在PM中添加HDFS服务、配置HDFS服务权限策略、默认策略、策略配置、测试用户访问权限、在ranger中添加组合用户、基于角色授权、测试。我们发现,只要Ranger中的权限已更新,hdfs客户端就可以实现更新。
按照之前的配置,审计日志信息保存在指定目录。找到一条审计日志,查看其中的内容。审计日志中包含操作时间、路径、资源类型、对应Ranger中的策略等信息。一旦出现安全类问题,通过审计日志可以检查到进行了哪些操作。
部署Ranger HDFS HA。在HDFS的HA集群上,NameNode可能会发生failover,采集网站的源码因此非常有必要在每个HDFS的NameNode上部署一个HDFS插件,以确保在HA切换时能够正常控制权限。部署hdfs plugin到每个NameNode节点、初始化NameNode、测试NameNode节点权限。测试lisi用户在/tmp目录的写入权限,发现当前lisi没有写入权限。在Ranger中启用sales角色的用户具备/tmp目录可写权限。重新执行写入操作,NameNode接入Ranger权限控制成功。
部署Ranger框架整合Hive、上传解压Hive插件、初始化配置、启动Hive插件。Ranger会对Hive的配置文件进行处理,生成hiveserver2-site.xml、ranger-hive-audit.xml、ranger-hive-security.xml等文件。重新启动Hive、beeline登录到hive、在PM中添加Hive服务、添加Hive Service、查看权限策略、查看默认hive导入的权限、使用hive查看数据、给hadoop组用户授权、检查spark用户操作权限、授权hadoop组、对某个库、表、列设置细粒度权限、测试数据打码处理、测试Ranger Admin crash对Hive的影响、部署Ranger Spark SQL、编译Apache submarine spark-security模块、配置、配置Spark SQL、测试Thrift Server、测试Spark SQL SHELL、到此Ranger整合Spark SQL完成、查看spark sql审计日志、报错信息处理、找不到AllocationFileLoaderService$Listener、异常信息、解决办法、参考文献。
数据资产管理平台体系拆解(4):元数据管理
阅读本文需要分钟,以数据之名,践资产之行。
1、以数据之名 简介
2、元数据的基本概念
2.1 抽象概念
元数据,简单来说就是描述数据的数据。元数据无处不在,换言之有数据存在,就有其对应元数据。完整、准确的元数据存在,有助于更好地理解数据本体,充分挖掘数据的价值。
单存的从概念来讲,确实比较抽象,我们对元数据的理解还是很模糊。那么让我们先看一段简历达人"张三"的个人简历。
这份简历中的"电话"、"工作经验"、"年龄"、"邮箱"、"教育背景"等对于张三本人的关键描述信息,就是元数据,因为它们是用来描述具体数据/信息的数据/信息。这样引用论证的方式,是不是让我们对元数据的概念一瞬间立体起来啦。
2.2 具体概念
对于企业应用的具体概念,元数据是企业所使用的物理数据、业务流程、数据结构等有关的信息,描述了数据(如数据库、数据模型)、概念(如业务流程、应用系统、技术架构)以及它们之间的关系。
元数据管理是对数据采集、存储、加工和展现等数据全生命周期的描述信息,帮助用户理解数据关系和相关属性。
3、元数据的价值
通过元数据管理,形成整个系统信息数据资产的精准视图,通过元数据的统一视图,缩短数据清理周期、提高数据质量以便能系统性地管理数据中心项目中来自各业务系统的海量数据,梳理业务元数据之间的关系,建立信息数据标准完善对这些数据的解释、定义,形成企业范围内一致、统一的数据定义,并可以对这些数据来源、运作情况、变迁等进行跟踪分析。
元数据是企业数据资产的基础应用字典和操作指南,元数据管理有利于统一数据口径、标明数据方位、分析数据关系、管理数据变更,为企业级的数据治理提供支持,是企业实现数据自服务、推动企业数据化运营的可行路线。
4、元数据分类
4.1 业务元数据
4.2 管理元数据
4.3 技术元数据
描述对象存储的元数据,也是通常"狭义"上的元数据,包括几大类:
描述离线或实时ETL任务数据计算过程的元数据。
描述数据质量的一类元数据。
描述数据是如何进行使用的一类元数据。
描述系统运维层面的元数据,通常包括以下几类。
描述数据存储及计算成本的元数据。
描述数据标准化内容的元数据。
描述数据安全内容的元数据。
描述数据是如何共享的部分,通常使用以下几种方式:
5、元数据管理办法
5.1 关键活动
5.2 管理流程
我们可以采用角色与组织联动,制定一套标准化元数据管理流程体系,贯穿于整个数据采集、管理分析与数据服务端到端的实施过程,来完善整体的元数据管理体系。
6、元数据管理功能
6.1 元数据采集
元数据管理平台通过不同的数据采集适配器,能支持从不同的数据源中采集从生产业务系统、数据中转系统、数据应用系统等端到端应用链路的数据流转过程的全量元数据,包括过程中的数据实体(系统、库、表、字段的描述)以及数据实体加工处理过程中的逻辑元数据。同时还能制定采集任务定时采集,减少人工操作的IT成本。
6.2 元数据访问
元数据访问服务是元数据管理软件提供的元数据访问的接口服务,一般支持Http、文件、接口库等对接形式。通过元数据访问服务支持企业元数据的共享,是企业数据治理的基础。
6.3 元数据管理
实现元数据的模型定义并存储,在功能层包装成各类元数据功能,最终对外提供应用及展现;提供元数据分类和建模、血缘关系和影响分析,方便数据的跟踪和回溯。
6.4 元数据分析
元数据的应用一般包括数据地图、数据血缘分析、关联性分析、影响分析、全链分析等,分析出元数据的来龙去脉,快速识别元数据的价值,掌握元数据变更可能造成的影响,以便更有效的评估变化带来的风险,从而帮助用户高效准确的对数据资产进行清理、维护与使用。
7、元数据管理功能架构
备注:权限管理中心,走平台统一鉴权SSO
8、元数据血缘解析
8.1 血缘解析引擎构建
基于数据资产开发平台作为开发统一入口的前提,构建元数据血缘引擎服务体系。引擎体系:SQL、Kettle 、Xml、Excel、Interface、Service、Workflow 、Datax等任务体系:DMP(Datax任务、SQL任务、Shell任务、报表任务、监控任务)、KMP(Kettle任务)、DMS(接口和服务)、BMP(工作流和调度器)等目标方向:基于血缘解析引擎解析落地元数据,提供可视化的标准ETL任务元数据血缘查询服务,以及KMP/DMP/BMP三大平台任务关联性和影响性分析服务。
8.2 血缘解析引擎机制
基于DMP数据管理开发平台,快速实施个性化报表开发的端到端流程图,其中任务开发、血缘查询和血缘确认环节为开发人员手动实施流程,其余环节为平台系统自动化实施流程,具体如下图所示:
9、元数据功能预览
9.1 血缘分析
9.2 影响分析
9.3 全链分析
9.4 关联度分析
9.5 元数据全文检索
、数据平台文章集锦
数据资产管理平台体系拆解(1):“平台概述”
数据资产管理平台体系拆解(2):“系统分解”
数据资产管理平台体系拆解(3):“数据模型”
MySQL死磕到底系列第一篇“围城之困”
MySQL死磕到底系列第二篇“破冰之旅”
MySQL死磕到底系列第三篇“踏浪之途”
MySQL死磕到底系列第四篇“刨根之程”
MyCAT来生续缘第三篇
无Hive,不数仓
基于Hive+HBase双引擎完善数据仓库更新机制
基于TiDB构建高性能综合数据服务平台
基于Kettle快速构建基础数据仓库平台
金融数据仓库之分层命名规范
一入数据深似海,集市仓库湖中台
湖不湖实战系列之Hudi构建湖仓一体架构
湖不湖实战系列之Hudi源码编译
湖不湖实战系列之Spark2部署升级
湖不湖实战系列之Spark2构建HDFS到Hudi通路
湖不湖实战系列之Spark2构建Hive到Hudi通路
BI选型哪家强,以数据之名挑大梁
数仓小白快速成长为技术专家视频资料集合
小编心声 虽小编一己之力微弱,但读者众星之光璀璨。小编敞开心扉之门,还望倾囊赐教原创之文,期待之心满于胸怀,感激之情溢于言表。一句话,欢迎联系小编投稿您的原创文章! 让我们携手成为技术专家
参考资料
[1] 元数据分类参考1: baijiahao.baidu.com/s?...
[2] 元数据分类参考2: baijiahao.baidu.com/s?...
[3] 数据资产白皮书5.0:中国信通院
[4] Markdown模板: product.mdnice.com/arti...