1.Dubbo源码解析:网络通信
2.Thrift入门 | Thrift框架分析(源码角度)
3.深入源码分析下 HIVE JDBC 的源码超时机制及其如何配置 socketTimeOut
4.第一次体验Apache Kyuubi
5.Apache Thrift系列详解(二) - 网络服务模型
6.SIMD 加速:AVX2 指令集实现大小端转换
Dubbo源码解析:网络通信
<dubbo源码解析:深入理解网络通信
在之前的章节中,我们已经了解了消费者如何通过服务发现和负载均衡机制找到提供者并进行远程调用。大全本章将重点解析网络通信的源码实现细节。
网络通信主要在Dubbo的大全Remoting模块中进行,涉及多种通信协议,源码包括dubbo协议、大全开源团购源码RMI、源码Hessian、大全HTTP、源码WebService、大全Thrift、源码REST、大全gRPC、源码Memcached和Redis等。大全每个协议都有其特定的源码优缺点,如Dubbo协议适用于高并发场景,而RMI则使用标准JDK序列化。
Dubbo的序列化机制支持多种方式,如Hessian2、Kryo、FST等。近年来,高效序列化技术如Kryo和FST的出现,可提升性能,只需在配置中简单添加即可优化。
关于数据格式和粘包拆包问题,Dubbo采用私有RPC协议,消息头存储元信息,如魔法数和数据类型,消息体则包含调用信息。消费者发送请求时,会通过MockClusterInvoker封装服务降级逻辑,2021新版互助抢单源码然后通过序列化转换为网络可传输的数据格式。
服务提供方接收请求时,首先对数据包进行解码,确认其格式正确性,然后调用服务逻辑。提供方返回调用结果时,同样经过序列化和编码,最后通过NettyChannel发送给消费者。
在心跳检测方面,Dubbo采用双向心跳机制,客户端和服务端定期发送心跳请求以维持连接。此外,还通过定时任务处理重连和断连,确保连接的稳定性和可靠性。
总的来说,Dubbo的网络通信模块精细且灵活,通过多种协议和优化技术确保服务调用的高效和可靠性。
Thrift入门 | Thrift框架分析(源码角度)
深入理解Thrift框架,首先需要掌握其基本概念。Thrift是一个用于跨语言通信的框架,其设计初衷是提高开发效率和简化多语言环境下的服务调用。以下是Thrift框架的核心组成部分及其功能概述。 Thrift框架主要包括两个层:Protocol层和Transport层。Protocol层主要负责数据的序列化和反序列化,而Transport层则负责数据流的传输。Protocol层中包含多种序列化协议,常见的有Compact、Binary、JSON等,它们都继承自TProtocol基类,提供读写抽象操作。燕窝正品溯源码怎么查 以TBinaryProtocol为例,它是一种基于二进制的序列化协议。序列化过程主要包括以下几个关键步骤:writeMessageBegin:用于序列化message的开始部分,包括thrift版本、message名称和seqid等信息。
writeFieldStop:在所有字段序列化完成后,写入T_STOP标识符,表示序列化结束。
writeI、writeString、writeBinary:分别用于序列化整型、字符串和二进制数据。
在读取操作中,这些write操作的逆操作被执行,以实现反序列化。Protocol层的实现细节主要体现在读写函数的调用和抽象上。 Transport层负责数据的实际传输,它提供了一系列抽象方法,如isOpen、open、close、read和write等,用于管理底层连接的打开、关闭和数据读写。常见的Transport层协议包括TFramedTransport和TSocket。TFramedTransport通过缓冲区管理,实现了数据的分帧传输,而TSocket则基于原始的socket实现网络通信。 为了进一步提高性能,Transport层可能包含缓存和压缩等功能,以优化数据传输效率。ai德州机器人源码Thrift中,TSocket作为底层传输层,负责与原始socket交互,而TFramedTransport等上层Transport则在TSocket的基础上进行扩展,实现数据的高效传输。 总结,Thrift框架通过其Protocol层和Transport层,实现了跨语言、高效的数据传输。深入理解这些组件及其工作原理,对于开发和优化基于Thrift的分布式系统具有重要意义。深入源码分析下 HIVE JDBC 的超时机制及其如何配置 socketTimeOut
深入源码分析下HIVE JDBC的超时机制及其配置方法,首先,从一个常见的问题出发,即当HIVE JDBC连接在操作过程中遇到SocketTimeoutException时,这通常意味着操作超时。接下来,让我们回顾JDBC超时机制的相关参数和接口。
在JDBC中,超时机制主要通过setStatementTimeout和setConnectionTimeout这两个方法实现。setStatementTimeout用于设置SQL语句的超时时间,而setConnectionTimeout用于设置整个连接的超时时间。它们的单位都是毫秒。
在HIVE JDBC中,由于其基于Thrift进行通信,因此对socket级别的超时管理更为复杂。HiveStatement中的thrift socket timeout是通过配置实现的,通过深入源码分析,可以发现thrift socket timeout的值被赋值给HiveStatement实例。当应用程序直接创建和管理HIVE JDBC连接时,需要在创建HiveStatement实例时设置这个属性,同事问我要项目的源码以确保socket级别操作的超时时间得到正确配置。
如果应用程序通过数据库连接池进行连接管理,那么配置HiveStatement中的thrift socket timeout的过程会更复杂。通常,需要在连接池的配置中,为HIVE JDBC连接指定socket级别的超时属性,然后在使用连接时确保HiveStatement实例正确引用了这些配置。
通过以上分析,我们可以总结出在不同场景下配置HIVE JDBC socket级别的超时机制的方法。对于直接管理连接的应用程序,需要在创建HiveStatement实例时直接设置socket timeout属性。而对于使用数据库连接池的应用程序,则需要在连接池的配置阶段为HIVE JDBC连接指定socket级别的超时属性,然后确保在使用连接时HiveStatement实例正确引用了这些配置。
总之,HIVE JDBC的超时机制及其配置方法涉及到多个层面的参数和接口,理解并正确配置它们对于确保应用程序的稳定性和响应速度至关重要。通过源码分析和实践操作,可以实现对HIVE JDBC socket级别的超时管理,从而优化应用程序性能。
第一次体验Apache Kyuubi
Kyuubi是一个分布式多租户Thrift JDBC/ODBC服务器,它构建在Apache Spark之上,专为大规模数据管理和分析而设计。此服务支持丰富的存储和客户端工具,尤其在数据湖组件方面表现优异,受到高度评价。
相较于Spark Thrift Server,Kyuubi提供了更为稳定、可靠的运行环境,能有效解决并发负载下的卡死、泄漏问题,并实现用户资源隔离。同时,Kyuubi支持广泛的数据源,比Spark Thrift Server更为灵活。此外,Kyuubi还通过HTTP REST方式提供服务,实现用户之间的资源隔离,改善了用户体验。
基于Livy进行即席查询的局限性在于其依赖HTTP REST接口,无法提供Thrift或JDBC服务,并且无法实现同一用户下的资源共用。这些限制促使了Kyuubi的引入,作为更佳的解决方案。
为使用Kyuubi,首先需要下载源码包并安装Scala编译环境。在编译过程中,Maven会下载依赖包,成功后会生成一个tgz包。接下来,在YARN环境中部署Kyuubi引擎,确保Spark已经整合了Hive和Hudi。配置Kyuubi环境包括设置JVM参数、配置Spark参数等步骤,以确保资源高效使用和避免资源占用问题。
启动Kyuubi之前,需解决端口冲突问题。配置Kyuubi HA(高可用)模式可提高服务可靠性。启动Kyuubi后,可以使用Hive的beeline进行连接测试。在测试过程中,可能遇到Spark用户不允许扮演Hive用户的问题,需要配置Spark用户代理权限以解决。
成功配置后,Kyuubi能够实现高效的多用户查询和资源隔离,为数据管理和分析提供强大支持。用户可以利用其丰富的功能和优化的性能,高效地处理大规模数据集。
Apache Thrift系列详解(二) - 网络服务模型
Thrift网络服务模型详解
本文深入探讨Thrift提供的网络服务模型,涵盖单线程、多线程、事件驱动模型,从阻塞服务到非阻塞服务的视角进行分类。重点介绍TServer类的层次结构与核心功能,以及TServer的不同实现类,如TSimpleServer、TThreadPoolServer、TNonblockingServer和THsHaServer的特性与工作原理。
TServer类提供了静态内部类Args,通过抽象类AbstractServerArgs采用建造者模式向TServer提供各种工厂。TServer的核心方法包括serve()、stop()和isServing(),分别用于启动、关闭和检测服务状态。
TSimpleServer采用简单的阻塞IO工作模式,实现直观易懂,但仅支持单连接处理,效率较低。TThreadPoolServer采用阻塞socket方式工作,通过线程池实现并发处理,解决TSimpleServer的并发和多连接问题。
TNonblockingServer基于NIO模式,利用Channel/Selector机制实现IO事件驱动,提高了处理效率。THsHaServer继承TNonblockingServer,引入线程池提高任务并发处理能力,实现半同步半异步处理模式。TThreadedSelectorServer是THsHaServer的扩展,将网络I/O操作分离到多个线程中,进一步优化性能。
每种服务模型都有其优点与缺点,如线程池模式处理能力受限于线程池工作能力,TNonblockingServer在业务复杂耗时场景下效率不高,而TThreadedSelectorServer则能有效应对网络I/O较多的场景。
本文全面分析了Thrift各种线程服务模型的用法、工作流程、原理和源码实现,旨在提供深入理解与实践指导。欢迎关注公众号获取更多后端技术干货。
SIMD 加速:AVX2 指令集实现大小端转换
在应用 thrift 进行 RPC 通信时,由于 Thrift 采用大端序,而常见处理器架构如 x_ 采用小端序,list 等数据类型需循环转换。利用 SIMD 指令加速性能。探索实现 Thrift 编译后端的 Auto-vectorization Pass,使用 AVX2 实现简单大小端转换,对比不同条件下的加速效果。
大小端转换原理:数据存储有大端和小端两种字节优先顺序。数 0x 存储中,大端模式高位字节优先,小端模式低位字节优先。可使用 API 或移位函数转换。编译器内置的 bswap 指令适用于 x 和 ARM,实现转换,O2 编译优化时自动替换自定义实现。
AVX2 指令集:SIMD 提供高度并行化计算选择。bswap 指令反转 2、4 或 8 字节顺序,SIMD 扩展允许一条指令并行处理多个数据实例,称为 vectors。常用指令集包括 AVX/AVX2,具体信息参考 Intel 指令集查询。使用 `_mm_shuffle_epi8` 进行向量字节重排序。
AVX2 示例代码:提供 位整数大小端转换的循环示例,使用 AVX2 加速。向量长度为 位,处理 4 个 bit 整数。对于非整数倍长度数组,使用一般转换法逐个处理。
性能测试:使用不同整数宽度(、、 位)进行大小端转换,测试 bswap 和 AVX2 的加速比。宽度更小的数组并行度更高,AVX2 加速比显著提升, 位时加速比约为 2.5, 位时加速比可达 倍。
生成的汇编指令:使用 objdump 查看编译结果汇编代码,了解 AVX2 指令集的实际应用。
完整源代码与性能测试:提供详细代码实现,包含性能测试结果。参考 Zhihu On VSCode 创作与发布。
Java教程:dubbo源码解析-网络通信
在之前的内容中,我们探讨了消费者端服务发现与提供者端服务暴露的相关内容,同时了解到消费者端通过内置的负载均衡算法获取合适的调用invoker进行远程调用。接下来,我们聚焦于远程调用过程,即网络通信的细节。
网络通信位于Remoting模块中,支持多种通信协议,包括但不限于:dubbo协议、rmi协议、hessian协议、pile-c++-libhdfs -Dislibhdfs=true`,并配置HADOOP_HOME的CLASSPATH。
安装Scribe的步骤包括运行bootstrap脚本(参见扩展阅读)。可能遇到的错误及解决方法如下:当Boost不在默认目录时,配置命令如下:`./configure –with-boost=/usr/local/boost –prefix=/usr/local/scribe`。
如果运行examples时出现`ImportError: No module named scribe`,可能需要添加Python路径,如:`$export PYTHONPATH="/usr/lib/python2.6/site-packages/"`。
遇到`java.lang.NoClassDefFoundError: org/apache/hadoop/conf/Configuration`异常,需将Hadoop的classpath添加到环境变量中,如:`$export CLASSPATH=$HADOOP_HOME/hadoop-core-0..2+.jar[2]`。
安装完成后,可以参考扩展阅读8中的方法验证安装是否成功。