1.Spark源码解析2-YarnCluster模式启动
2.深入浅出 Yarn 架构与实现4-1 ResourceManager 功能概述
3.Vue3核心源码解析 (一) : 源码目录结构
4.Expo 搭建 React-native 项目代码目录分析
5.yarn源码分析(四)AppMaster启动
6.深入理解 Hadoop (七)YARN资源管理和调度详解
Spark源码解析2-YarnCluster模式启动
YARN 模式运行机制主要体现在Yarn Cluster 模式和Yarn Client 模式上。源码在Yarn Cluster模式下,解析SparkSubmit、源码ApplicationMaster 和 CoarseGrainedExecutorBackend 是解析独立的进程,而Driver 是源码独立的线程;Executor 和 YarnClusterApplication 是对象。在Yarn Client模式下,解析cef 源码解析SparkSubmit、源码ApplicationMaster 和 YarnCoarseGrainedExecutorBackend 也是解析独立的进程,而Executor和Driver是源码对象。
在源码中,解析SparkSubmit阶段首先执行Spark提交命令,源码底层执行的解析是开启SparkSubmit进程的命令。代码中,源码SparkSubmit从main()开始,解析根据运行模式获取后续要反射调用的源码类名赋给元组中的ChildMainClass。如果是Yarn Cluster模式,则为YarnClusterApplication;如果是Yarn Client模式,则为主类用户自定义的类。接下来,获取ChildMainClass后,通过反射调用main方法的过程,反射获取类然后通过构造器获取一个示例并多态为SparkApplication,再调用它的start方法。随后调用YarnClusterApplication的start方法。在YarnClient中,new一个Client对象,其中包含了yarnClient = YarnClient.createYarnClient属性,这是Yarn在SparkSubmit中的客户端,yarnClient在第行初始化和开始,小金马系统源码即连接Yarn集群或RM。之后就可以通过这个客户端与Yarn的RM进行通信和提交应用,即调用run方法。
ApplicationMaster阶段主要涉及开启一个Driver新线程、AM向RM注册、AM向RM申请资源并处理、封装ExecutorBackend启动命令以及AM向NM通信提交命令由NM启动ExecutorBackend。在ApplicationMaster进程中,首先开启Driver线程,开始运行用户自定义代码,创建Spark程序入口SparkContext,接着创建RDD,生成job,划分阶段提交Task等操作。
在申请资源之前,AM主线程创建了Driver的终端引用,作为参数传入createAllocator(),因为Executor启动后需要向Driver反向注册,所以启动过程必须封装Driver的EndpointRef。AM主线程向RM申请获取可用资源Container,并处理这些资源。ExecutorBackend阶段尚未完成,后续内容待补充。
深入浅出 Yarn 架构与实现4-1 ResourceManager 功能概述
深入浅出 Yarn 架构与实现,本文将重点介绍 ResourceManager(RM)的功能概述与架构解析。一、RM 基本职能
RM 主要承担集群管理、任务调度、源码改单技术状态机管理等功能,通过与各 Client 的 RPC 通信实现「Pull 模型」,定期接收 Client 心跳并下达指令。
二、RM 内部架构
RM 内部包含用户交互、NM 管理、AM 管理、Application 管理、状态机管理、安全管理与资源分配等多个模块。架构设计采用事件驱动机制,通过中央异步调度器整合不同组件。
三、RM 事件与事件处理器
Yarn 的事件驱动机制中,RM 作为核心组件,通过事件交互实现高效并行系统。组件间通过事件通信协同工作。
四、小结
ResourceManager 在 YARN 中扮演核心角色,负责资源统一管理和分配。本文对 RM 的职能、架构、事件处理进行了概述,后续文章将深入源码,对各个部分进行更详细的解析。
Vue3核心源码解析 (一) : 源码目录结构
通过软件框架源码阅读,深入理解框架运行机制,API设计、网站建站源码模板原理及流程成为开发者进阶的关键。Vue 3源码相较于Vue 2版本的改进明显,采用Monorepo目录结构,引入TypeScript作为开发语言,新增特性和优化显著。
启动Vue3源码,最新版本为V3.3.0-alpha.5。下载后进入core文件夹,使用Yarn进行构建。安装依赖后,执行npm run dev启动调试模式,可直观查看完整的源代码目录结构。
核心模块包括compiler-core、compiler-dom、runtime-core、runtime-dom。compiler模块在编译阶段负责将.vue文件转译成浏览器可识别的.js文件,runtime模块则负责程序运行时的处理。reactivity目录内是响应式机制的源码,遵循Monorepo规范,每个子模块独立编译打包,通过require引入。
构建Vue 3版本可使用命令,构建结果保存在core\packages\vue\dist目录下。选择性构建可通过命令实现,具体参数配置在core/rollup.config.js中查看。对于客户端编译模板,需构建完整版本,暴涨来临指标源码而使用Webpack的vue-loader时,.vue文件中的模板在构建时预编译,无需额外编译器。浏览器直接打开页面时采用完整版本,构建工具如Webpack引入运行时版本。Vue的构建脚本源码位于core/scripts下。
Expo 搭建 React-native 项目代码目录分析
创建React-native项目时,Expo提供了多种工具简化开发过程。根据项目需求,选择不同的模板:空白模板(blank)适合演示、组件预览和个人项目;带有底部tab菜单的模板(tabs);需要直接控制原生代码时选择(minimal);遇到未知问题则选择RN方式。[1] React Native的典型目录结构包括以下几个部分:[2]src:存放组件源代码,是项目开发的核心目录。
test:用于编写和运行组件的测试用例。
demo:包含一个独立的Expo项目,App.js是核心文件,通过引用src中的组件进行展示和开发。
其他文件如.eslintrc.js, babel.config.js, README.md, .gitignore, package.json等,分别负责代码风格规范、编译配置、项目介绍和版本管理。
引入Expo时,需注意src目录与demo目录的配置协调,以确保metro(打包工具)能够正确处理。首先安装Expo CLI,然后创建项目,通过yarn start预览组件。配置metro时,重点在于新版本的metro.config.js,用于添加providesModuleNodeModules,解决src目录依赖的解析问题。[3] 总结起来,开发过程中App.js是关键,负责组件的集成和展示。app.json和package.json分别用于设置应用配置和依赖管理。assets存放资源文件,babel.config.js用于代码转换,index.js是应用入口,metro.config.js负责项目打包,而yarn.lock则保证了依赖版本的一致性。eas.json则提供了EAS平台的云构建和部署选项。每个文件都有其特定的功能,共同构建React-native项目的开发流程。[4]yarn源码分析(四)AppMaster启动
在容器分配完成之后,启动容器的代码主要在ContainerImpl.java中进行。通过状态机转换,container从NEW状态向其他状态转移时,会调用RequestResourceTransition对象。RequestResourceTransition负责将所需的资源进行本地化,或者避免资源本地化。若需本地化,还需过渡到LOCALIZING状态。为简化理解,此处仅关注是否进行资源本地化的情况。
为了将LAUNCH_CONTAINER事件加入事件处理队列,调用了sendLaunchEvent方法。该事件由ContainersLauncher负责处理。ContainersLauncher的handle方法中,使用一个ExecutorService(线程池)容器Launcher。ContainerLaunch实现了Callable接口,其call方法生成并执行launch_container脚本。以MapReduce框架为例,该脚本在hadoop.tmp.dir/application name/container name目录下生成,其主要作用是启动MRAppMaster进程,即MapReduce的ApplicationMaster。
深入理解 Hadoop (七)YARN资源管理和调度详解
Hadoop最初为批处理设计,其资源管理与调度仅支持FIFO机制。然而,随着Hadoop的普及与用户量的增加,单个集群内的应用程序类型与数量激增,FIFO调度机制难以高效利用资源,也无法满足不同应用的服务质量需求,故需设计适用于多用户的资源调度系统。
YARN采用双层资源调度模型:ResourceManager中的资源调度器分配资源给ApplicationMaster,由YARN决定;ApplicationMaster再将资源分配给内部任务Task,用户自定。YARN作为统一调度系统,满足调度规范的分布式应用皆可在其中运行,调度规范包括定义ApplicationMaster向RM申请资源,AM自行完成Container至Task分配。YARN采用拉模型实现异步资源分配,RM分配资源后暂存缓冲区,等待AM通过心跳获取。
Hadoop-2.x版本中YARN提供三种资源调度器,分别为...
YARN的队列管理机制包括用户权限管理与系统资源管理两部分。CapacityScheduler的核心特点包括...
YARN的更多理解请参考官方文档:...
在分布式资源调度系统中,资源分配保证机制常见有...
YARN采用增量资源分配,避免浪费但不会出现资源饿死现象。YARN默认资源分配算法为DefaultResourceCalculator,专注于内存调度。DRF算法将最大最小公平算法应用于主资源上,解决多维资源调度问题。实例分析中,系统中有9个CPU和GB RAM,两个用户分别运行两种任务,所需资源分别为...
资源抢占模型允许每个队列设定最小与最大资源量,以确保资源紧缺与极端情况下的需求。资源调度器在负载轻队列空闲时会暂时分配资源给负载重队列,仅在队列突然收到新提交应用程序时,调度器将资源归还给该队列,避免长时间等待。
YARN最初采用平级队列资源管理,新版本改用层级队列管理,优点包括...
CapacityScheduler配置文件capacity-scheduler.xml包含资源最低保证、使用上限与用户资源限制等参数。管理员修改配置文件后需运行"yarn rmadmin -refreshQueues"。
ResourceScheduler作为ResourceManager中的关键组件,负责资源管理和调度,采用可插拔策略设计。初始化、接收应用和资源调度等关键功能实现,RM收到NodeManager心跳信息后,向CapacityScheduler发送事件,调度器执行一系列操作。
CapacityScheduler源码解读涉及树型结构与深度优先遍历算法,以保证队列优先级。其核心方法包括...
在资源分配逻辑中,用户提交应用后,AM申请资源,资源表示为Container,包含优先级、资源量、容器数目等信息。YARN采用三级资源分配策略,按队列、应用与容器顺序分配空闲资源。
对比FairScheduler,二者均以队列为单位划分资源,支持资源最低保证、上限与用户限制。最大最小公平算法用于资源分配,确保资源公平性。
最大最小公平算法分配示意图展示了资源分配过程与公平性保证。
yarnçå®è£
è¿æ®µæ¶é´æ vue3çæºç ï¼å¨å¼å§æ¶ï¼å°±ç¢°å°äºyarnçå®è£ é®é¢
æ¿å°æºç ï¼npm installï¼å¾å¥½ï¼æ¥éï¼
æ¥ä¸æ¥å®è£ yarnï¼
å¨vscodeéé¢å®è£ yarnçæ¶åï¼npm install -g yarn æ§è¡æåï¼
ä½æ¯å¨æ¥ççæ¬yarn -versionçæ¶åæ¥éï¼å¦ä¸ï¼
æåæ¯éè¦å¨ç¯å¢åééé¢é 置系ç»åéï¼å°åå°±æ¯npm install -g yarnçæ¶åè¿åçè·¯å¾ï¼æçå¦ä¸ï¼
ä¸å¾æ¯å ¶ä»äººä¸æ¬¡æ§è¡æåçæªå¾ååºæ¥çæ¯ç¯å¢åéé ç½®å°å
YARN源码剖析:NM启动过程
NodeManager初始化和启动过程主要涉及配置文件读取,资源信息配置,以及服务启动等步骤。重点在于初始化阶段,配置文件读取完成,包括关于节点资源信息的配置。
启动NodeManager(NM)时,遵循与ResourceManager(RM)类似的逻辑,启动各个服务。关键在于nodeStatusUpdater模块。其中两个重要方法为registerWithRM()和startStatusUpdater()。这两个方法通过RPC远程调用ResourceManager中的两个接口:registerNodeManager()和nodeHeartbeat()。
NM启动过程中添加的服务列表构成其核心功能描述。例如,NodeHealthCheckerService提供节点健康检查功能,包含两个子service:NodeHealthScriptRunner(使用配置的脚本进行健康检查)和LocalDirsHandlerService(检查磁盘健康状况)。此服务包含getHealthReport()方法,用于获取健康检查结果。
NM中的关键类之一为NMContext,它作为组件间信息共享的接口。
NM与RM之间的心跳通信是整个过程中不可或缺的部分,确保了资源管理系统的实时状态监控与资源分配协调。
综上所述,NodeManager的启动过程涉及初始化配置、启动关键服务以及与ResourceManager的交互,实现资源管理和节点健康监控等功能。这一过程为YARN框架提供了稳定、高效的基础结构。