欢迎来到【filelist源码】【高清影视源码】【erlang ets源码分析】spring 源码深度解析-皮皮网网站!!!

皮皮网

【filelist源码】【高清影视源码】【erlang ets源码分析】spring 源码深度解析-皮皮网 扫描左侧二维码访问本站手机端

【filelist源码】【高清影视源码】【erlang ets源码分析】spring 源码深度解析

2025-01-11 17:38:12 来源:{typename type="name"/} 分类:{typename type="name"/}

1.学习编程|Spring源码深度解析 读书笔记 第5章:容器的源码功能扩展
2.SpringBoot源码学习——SpringBoot自动装配源码解析+Spring如何处理配置类的
3.spring源码解析bean初始化与依赖注入四
4.学习编程|Spring源码深度解析 读书笔记 第4章:bean的加载
5.76 张图,剖析 Spring AOP 源码,深度小白居然也能看懂,解析大神,源码请收下我的深度膝盖!
6.Spring IoC源码深度剖析

spring 源码深度解析

学习编程|Spring源码深度解析 读书笔记 第5章:容器的解析filelist源码功能扩展

       深入理解Spring容器的扩展功能:学习笔记

       作者:牛客网-张学友

       在Spring框架中,容器功能的源码扩展是其强大和灵活的关键。首先,深度ApplicationContext相较于BeanFactory,解析提供了更多功能,源码它是深度BeanFactory的子类,包含了其所有功能并有所扩充。解析主要区分点在于ApplicationContext的源码启动过程和其特有的扩展功能。

       通过`ClassPathXmlApplicationContext`的深度实例化,开启源码探索之旅。解析在构造函数和`refresh`方法中,Spring对配置文件解析,并实现了一系列扩展,如环境变量处理、配置文件加载、Spring Expression Language (SPEL)的支持、属性编辑器的注册以及ApplicationContextAwareProcessor的使用等。这些扩展不仅增强了容器的灵活性,还为开发者提供了更丰富的控制选项。

       例如,`refresh`方法中包含了初始化准备工作、BeanFactory的获取和定制、XML文件解析、bean定义填充、Spring表达式解析、属性编辑器注册、BeanPostProcessor的处理、依赖处理和国际化功能等。这些步骤体现了Spring框架的高度可扩展性,使得用户可以根据项目需求定制容器行为。高清影视源码

       总结来说,Spring容器的功能扩展涉及到了配置文件处理、表达式语言、事件监听、国际化等多个方面,使得开发过程更加便捷且易于定制。想了解更多细节,可以参考作者的原文链接和更多读书笔记资源。

SpringBoot源码学习——SpringBoot自动装配源码解析+Spring如何处理配置类的

       SpringBoot通过SPI机制,借助外部引用jar包中的META-INF/spring.factories文件,实现引入starter即可激活功能,简化手动配置bean,实现即开即用。

       启动SpringBoot服务,通常使用Main方法启动,其中@SpringBootApplication注解包含@SpringBootConfiguration、@EnableAutoConfiguration、@ComponentScan,自动装配的核心。

       深入分析@SpringBootApplication,其实质是执行了@SpringBootConfiguration、@EnableAutoConfiguration、@ComponentScan三个注解的功能,简化了配置过程,强调了约定大于配置的思想。

       SpringBoot的自动装配原理着重于研究如何初始化ApplicationContext,Spring依赖于ApplicationContext实现其功能,SpringApplication#run方法为初始化ApplicationContext的入口。

       分析SpringApplication构造方法,SpringApplication.run(启动类.class, args) 实际调用的是该方法,其关键在于根据项目类型反射生成合适的ApplicationContext。

       选择AnnotationConfigServletWebServerApplicationContext,此上下文具备启动Servlet服务器和注册Servlet或过滤器类型bean的能力。

       准备刷新ApplicationContext,erlang ets源码分析SpringBoot将主类注册到Spring容器中,以便@ConfigurationClassPostProcessor解析主类注解,发挥@Import、@ComponentScan的作用。

       刷新ApplicationContext过程包括一系列前置准备,如将主类信息封装成AnnotatedGenericBeanDefinition,解析注解并调用BeanDefinitionCustomizer自定义处理。

       解析配置类中的注解,通过BeanDefinitionRegistryPostProcessor和ConfigurationClassParser实现,筛选、排序候选者,并解析@Import注解实现自动装配。

       增强配置类,ConfigurationClassPostProcessor对full模式的配置进行增强,确保@Import正确处理,CGLIB用于增强原配置类,确保生命周期完整,避免真正执行@Bean方法逻辑。

       深入解析AutoConfigurationImportSelector实现自动装配,通过spring.boot.enableautoconfiguration设置开启状态,读取spring-autoconfigure-metadata.properties和META-INF/spring.factories文件,筛选并加载自动配置类。

spring源码解析bean初始化与依赖注入四

       深入解析Spring源码的bean初始化与依赖注入部分,我们将继续从上一篇文章的

       org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#doCreateBean方法入手。

       随后,方法调用

       org.springframework.beans.factory.support.AbstractBeanFactory#registerDisposableBeanIfNecessary进行注册

       紧接着,调用

       org.springframework.beans.factory.support.AbstractBeanFactory#doGetBean获取bean实例。

       在这一过程中,我们到达了

       org.springframework.beans.factory.support.DefaultSingletonBeanRegistry#destroySingleton用于销毁单例bean。

       然后,再次深入

       org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#createBean方法进行bean的创建。

       紧接着,调用

       org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#resolveBeforeInstantiation对bean进行前置解析。

       之后,myelicpes导入JDK源码再次返回

       org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory#createBean进行bean实例化。

       然后,调用

       org.springframework.beans.factory.support.AbstractBeanFactory#doGetBean再次获取bean实例。

       紧接着,进入

       org.springframework.beans.factory.support.DefaultListableBeanFactory#preInstantiateSingletons进行单例bean的预实例化。

       最终,完成bean的初始化后触发回调。

       返回

       org.springframework.context.support.AbstractApplicationContext#refresh执行上下文刷新,完成bean初始化与依赖注入。

       至此,本次关于Spring源码中bean初始化与依赖注入的解析告一段落,以上内容仅供学习参考。

学习编程|Spring源码深度解析 读书笔记 第4章:bean的加载

       在Spring框架中,bean的加载过程是一个精细且有序的过程。首先,当需要加载bean时,Spring会尝试通过转换beanName来识别目标对象,可能涉及到别名或FactoryBean的识别。

       加载过程分为几步:从缓存查找单例,Spring容器内单例只创建一次,若缓存中无数据,会尝试从singletonFactories寻找。接着是bean的实例化,从缓存获取原始状态后,可能需要进一步处理以符合预期状态。

       原型模式的依赖检查是单例模式特有的,用来避免循环依赖问题。然后,如果缓存中无数据,会检查parentBeanFactory,递归加载配置。BeanDefinition会被转换为RootBeanDefinition,合并父类属性,确保依赖的python博客django 源码正确初始化。

       Spring根据不同的scope策略创建bean,如singleton、prototype等。类型转换是后续步骤,可能将返回的bean转换为所需的类型。FactoryBean的使用提供了灵活的实例化逻辑,用户自定义创建bean的过程。

       当bean为FactoryBean时,getBean()方法代理了FactoryBean的getObject(),允许通过不同的方式配置bean。缓存中获取单例时,会执行循环依赖检测和性能优化。最后,通过ObjectFactory实例singletonFactory定义bean的完整加载逻辑,包括回调方法用于处理单例创建前后的状态。

张图,剖析 Spring AOP 源码,小白居然也能看懂,大神,请收下我的膝盖!

       本文将简要介绍AOP(面向切面编程)的基础知识与使用方法,并深入剖析Spring AOP源码。首先,我们需要理解AOP的基本概念。

       1. **基础知识

**

       1.1 **什么是AOP?

**

       AOP全称为Aspect Oriented Programming,即面向切面编程。AOP的思想中,周边功能(如性能统计、日志记录、事务管理等)被定义为切面,核心功能与切面功能独立开发,然后将两者“编织”在一起,这就是AOP的核心。

       AOP能够将与业务无关、却为业务模块共同调用的逻辑封装,减少系统重复代码,降低模块间的耦合度,有利于系统的可扩展性和可维护性。

       1.2 **AOP基础概念

**

       解释较为官方,以下用“方言”解释:AOP包括五种通知分类。

       1.3 **AOP简单示例

**

       创建`Louzai`类,添加`LouzaiAspect`切面,并在`applicationContext.xml`中配置。程序入口处添加`"睡觉"`方法并添加前置和后置通知。接下来,我们将探讨Spring内部如何实现这一过程。

       1.4 **Spring AOP工作流程

**

       为了便于理解后面的源码,我们将整体介绍源码执行流程。整个Spring AOP源码分为三块,结合示例进行讲解。

       第一块是前置处理,创建`Louzai`Bean前,遍历所有切面信息并存储在缓存中。第二块是后置处理,创建`Louzai`Bean时,主要处理两件事。第三块是执行切面,通过“责任链+递归”执行切面。

       2. **源码解读

**

       注意:Spring版本为5.2..RELEASE,否则代码可能不同!这里,我们将从原理部分开始,逐步深入源码。

       2.1 **代码入口

**

       从`getBean()`函数开始,进入创建Bean的逻辑。

       2.2 **前置处理

**

       主要任务是遍历切面信息并存储。

       这是重点!请务必注意!获取切面信息流程结束,后续操作都从缓存`advisorsCache`获取。

       2.2.1 **判断是否为切面

**

       执行逻辑为:判断是否包含切面信息。

       2.2.2 **获取切面列表

**

       进入`getAdvice()`,生成切面信息。

       2.3 **后置处理

**

       主要从缓存拿切面,与`Louzai`方法匹配,创建AOP代理对象。

       进入`doCreateBean()`,执行后续逻辑。

       2.3.1 **获取切面

**

       首先,查看如何获取`Louzai`的切面列表。

       进入`buildAspectJAdvisors()`,方法用于存储切面信息至缓存`advisorsCache`。随后回到`findEligibleAdvisors()`,从缓存获取所有切面信息。

       2.3.2 **创建代理对象

**

       有了`Louzai`的切面列表,开始创建AOP代理对象。

       这是重点!请仔细阅读!这里有两种创建AOP代理对象方式,我们选择使用Cglib。

       2.4 **切面执行

**

       通过“责任链+递归”执行切面与方法。

       这部分逻辑非常复杂!接下来是“执行切面”最核心的逻辑,简述设计思路。

       2.4.1 **第一次递归

**

       数组第一个对象执行`invoke()`,参数为`CglibMethodInvocation`。

       执行完毕后,继续执行`CglibMethodInvocation`的`process()`。

       2.4.2 **第二次递归

**

       数组第二个对象执行`invoke()`。

       2.4.3 **第三次递归

**

       数组第三个对象执行`invoke()`。

       执行完毕,退出递归,查看`invokeJoinpoint()`执行逻辑,即执行主方法。回到第三次递归入口,继续执行后续切面。

       切面执行逻辑已演示,直接查看执行方法。

       流程结束时,依次退出递归。

       2.4.4 **设计思路

**

       这部分代码研究了大半天,因为这里不是纯粹的责任链模式。

       纯粹的责任链模式中,对象内部有一个自身的`next`对象,执行当前对象方法后,启动`next`对象执行,直至最后一个`next`对象执行完毕,或中途因条件中断执行,责任链退出。

       这里`CglibMethodInvocation`对象内部无`next`对象,通过`interceptorsAndDynamicMethodMatchers`数组控制执行顺序,依次执行数组中的对象,直至最后一个对象执行完毕,责任链退出。

       这属于责任链,实现方式不同,后续会详细剖析。下面讨论类之间的关系。

       主对象为`CglibMethodInvocation`,继承于`ReflectiveMethodInvocation`,`process()`的核心逻辑在`ReflectiveMethodInvocation`中。

       `ReflectiveMethodInvocation`的`process()`控制整个责任链的执行。

       `ReflectiveMethodInvocation`的`process()`方法中,包含一个长度为3的数组`interceptorsAndDynamicMethodMatchers`,存储了3个对象,分别为`ExposeInvocationInterceptor`、`MethodBeforeAdviceInterceptor`、`AfterReturningAdviceInterceptor`。

       注意!这3个对象都继承了`MethodInterceptor`接口。

       每次`invoke()`调用时,都会执行`CglibMethodInvocation`的`process()`。

       是否有些困惑?别着急,我将再次帮你梳理。

       对象与方法的关系:

       可能有同学疑惑,`invoke()`的参数为`MethodInvocation`,没错!但`CglibMethodInvocation`也继承了`MethodInvocation`,可自行查看。

       执行逻辑:

       设计巧妙之处在于,纯粹的责任链模式中,`next`对象需要保证类型一致。但这里3个对象内部没有`next`成员,不能直接使用责任链模式。怎么办呢?就单独设计了`CglibMethodInvocation.process()`,通过无限递归`process()`实现责任链逻辑。

       这就是我们为什么要研究源码,学习优秀的设计思路!

       3. **总结

**

       本文首先介绍了AOP的基本概念与原理,通过示例展示了AOP的应用。之后深入剖析了Spring AOP源码,分为三部分。

       本文是Spring源码解析的第三篇,感觉是难度较大的一篇。图解代码花费了6个小时,整个过程都沉浸在代码的解析中。

       难度不在于抠图,而是“切面执行”的设计思路,即使流程能走通,将设计思想总结并清晰表达给读者,需要极大的耐心与理解能力。

       今天的源码解析到此结束,有关Spring源码的学习,大家还想了解哪些内容,欢迎留言给楼仔。

Spring IoC源码深度剖析

       Spring IoC容器初始化深度剖析

       Spring IoC容器是Spring的核心组件,主要负责对象管理和依赖关系管理。容器体系丰富多样,如BeanFactory作为顶层容器,它定义了所有IoC容器的基本原则,而ApplicationContext及其子类如ClassPathXmlApplicationContext和AnnotationConfigApplicationContext则提供了额外功能。Spring IoC容器的初始化流程关键在AbstractApplicationContext的refresh方法中。

       1.1 初始化关键点

       通过创建特定类LagouBean并设置断点,我们发现Bean的创建在未设置延迟加载时,发生在容器初始化过程中。构造函数调用、InitializingBean的afterPropertiesSet方法以及BeanFactoryPostProcessor和BeanPostProcessor的初始化和调用,都在refresh方法的不同步骤中发生。

       1.2 主体流程概览

       Spring IoC容器初始化的主体流程主要集中在AbstractApplicationContext的refresh方法,涉及Bean对象创建、构造函数调用、初始化方法执行和处理器调用等步骤。

       1.3 深度剖析

       分析发现,延迟加载机制使得懒加载的bean在第一次调用getBean时才进行初始化。而对于非懒加载bean,它们在容器初始化阶段已经完成并缓存。Spring处理循环依赖的方法依赖于构造器调用的顺序规则,不支持原型bean的循环依赖,而对单例bean则通过setXxx或@Autowired方法提前暴露对象来避免循环依赖。