1.【Java原理系列】 Java可序列化接口Serializable原理全面用法示例源码分析
2.Spring Configuration:@Import的源码用法和源码解析
3.2万多行MyBatis源码,你知道里面用了多少种设计模式吗?
4.MASA Framework源码解读-01 MASAFacotry工厂设计(一个接口多个实现的接口最佳姿势)
5.Vert.x 源码解析(4.x)——Context源码解析
6.国产开发神器零代码搭建API接口开放/管理平台——YesApi
【Java原理系列】 Java可序列化接口Serializable原理全面用法示例源码分析
实现Serializable接口的类表示该类可以进行序列化。未实现此接口的设计类将不会被序列化或反序列化。所有实现Serializable接口的源码子类也是可序列化的。这个序列化接口没有方法或字段,接口仅用于标识可序列化的设计工程机械租赁网源码语义。
为了使非可序列化的源码类的子类能够进行序列化,子类需要承担保存和恢复父类的接口公共、受保护以及(如果可访问)包级字段状态的设计责任。只有当扩展的源码类具有可访问的无参构造函数来初始化类的状态时,子类才能承担这种责任。接口如果不满足这个条件,设计则声明类为可序列化是源码错误的,错误会在运行时被检测到。接口
在反序列化过程中,设计非可序列化类的字段将使用类的公共或受保护的无参构造函数进行初始化。无参构造函数必须对可序列化的子类可访问。可序列化子类的字段将从流中恢复。
在遍历图形结构时,可能会遇到不支持Serializable接口的对象。在这种情况下,将抛出NotSerializableException异常,并标识非可序列化对象的类。
实现Serializable接口的类需要显式指定自己的serialVersionUID,以确保在不同的java编译器实现中获得一致的值。如果未显式声明serialVersionUID,则序列化运行时会根据类的各个方面计算出一个默认的serialVersionUID值。
在使用Serializable接口时,有一些注意事项需要注意。例如,writeObject方法适用于以下场景:在覆写writeObject方法时,必须调用out.defaultWriteObject()来使用默认的序列化机制将对象的非瞬态字段写入输出流。只有在确实需要自定义序列化行为或保存额外的字段时,才需要覆写writeObject方法。
可以使用Externalizable接口替代Serializable接口,以实现更细粒度的控制,但需要更多的开发工作。Externalizable接口允许在序列化时指定额外的字段,但需要在类中实现writeExternal和readExternal方法。江都网站源码
序列化和反序列化的过程是通过ObjectOutputStream和ObjectInputStream来完成的。可以使用这两个类的writeObject和readObject方法来手动控制序列化和反序列化的过程。
序列化示例:定义了一个Person类,并实现了Serializable接口。Person类有两个字段:name和age。age字段使用了transient关键字修饰,表示该字段不会被序列化。在main方法中,创建了一个Person对象并将其序列化到文件中。从文件中读取序列化的数据,并使用强制类型转换将其转换为Person对象。输出原始的person对象和恢复后的对象,验证序列化和反序列化的结果。
序列化兼容性示例:在类进行了修改后,可以通过显式声明serialVersionUID来解决之前序列化的对象无法被正确反序列化的问题。
加密和验证示例:在进行网络传输或持久化存储时,可以使用加密算法对序列化的数据进行加密,或使用数字签名来验证数据的完整性。
自定义序列化行为示例:如果需要对对象的状态进行特殊处理,或以不同于默认机制的方式序列化对象的字段,可以通过覆写writeObject方法来控制序列化过程。
使用Externalizable接口的示例:定义一个类,实现Externalizable接口,并在类中实现writeExternal和readExternal方法,用于保存和恢复额外的字段。
序列化和反序列化的源码分析:序列化示例中的writeObject方法用于将指定的对象写入ObjectOutputStream中进行序列化。而readObject方法用于从ObjectInputStream中读取一个对象进行反序列化。
序列化和反序列化的核心代码段展示了如何在序列化和反序列化过程中处理对象的类、类的签名以及类和其所有超类的非瞬态和非静态字段的值。确保了对象的完整恢复和验证过程的执行。
Spring Configuration:@Import的用法和源码解析
Spring 3.0之后的@Configuration注解和注解配置体系替代了XML配置,本文主要讲解@Import的用法和源码解析。@Import的用法
配置类(带有@Configuration注解)不仅可通过@Bean声明bean,还可通过@Import导入其他类。例如,WebMvcConfig类通过@Import导入其他配置类,同时启用@EnableWebMvc。直接导入
配置类上使用@Import可以导入一个或多个类,德阳软件源码甚至可以出现在父类注解中。如WebMvcConfig导入DelegatingWebMvcConfiguration等。ImportBeanDefinitionRegistrar和ImportSelector
@Import除了导入配置类,还可以导入实现了ImportBeanDefinitionRegistrar(如@EnableAspectJAutoProxy)和ImportSelector(如@EnableTransactionManagement)的类。源码解析
ConfigurationClassPostProcessor负责处理@Configuration类,通过ConfigurationClassParser解析配置和导入,由ConfigurationClassBeanDefinitionReader注册BeanDefinition。在解析过程中,处理@Import避免循环导入,通过导入链和ImportStack进行判断。处理直接导入时,通过导入链判断循环。
处理注册器和选择器时,提前触发Aware接口方法,然后在适当时机注册导入的类。
总结来说,@Import提供了多种导入方式的灵活性,Spring的源码设计考虑了循环导入和重复解析的处理,展示了其强大的自定义配置能力。2万多行MyBatis源码,你知道里面用了多少种设计模式吗?
在MyBatis的两万多行的框架源码中,设计模式的巧妙使用是整个框架的精华。
MyBatis中主要使用了以下设计模式:工厂模式、单例模式、建造者模式、适配器模式、代理模式、组合模式、装饰器模式、模板模式、策略模式和迭代器模式。
具体来说,工厂模式用于SqlSessionFactory的创建,单例模式用于Configuration的管理,建造者模式用于ResultMap的构建,适配器模式用于统一日志接口,代理模式用于MapperProxy的实现,组合模式用于SQL标签的开封网站源码组合,装饰器模式用于二级缓存操作,模板模式用于定义SQL执行流程,策略模式用于多类型处理器的实现,迭代器模式用于字段解析的实现。
通过运用这些设计模式,MyBatis成功地实现了复杂场景的解耦,并将问题合理切割为若干子问题,以提高理解和解决的效率。
总的来说,MyBatis大约运用了种左右的设计模式,这使得框架在处理复杂问题时能够更加高效和灵活。
学习源码不仅可以帮助我们更好地理解设计模式和设计原则,更能够扩展我们的编码思维,积累实际应用的经验。
希望本文的分享能够帮助到您,同时也推荐您阅读《手写MyBatis:渐进式源码实践》一书,了解更多关于MyBatis的知识。
MASA Framework源码解读- MASAFacotry工厂设计(一个接口多个实现的最佳姿势)
闲来无事,偶然接触到了MASA Framework,此框架是MASA Stack系列中专门用于构建web系统的开源框架。通过在几个小型项目中的应用,我发现它确实拥有诸多优点。为深入理解其内部结构和设计思路,我决定详细阅读MASA Framework的源代码,并记录整个阅读过程。如有任何错误或疑问,还请各位指正。
MASA Framework是一个功能全面且易于扩展的框架,主要由三个部分组成:BuildingBlocks(抽象层)、Contrib(BuildingBlocks的实现)以及Utils(工具库)。官方将BuildingBlocks称为构建块,实际上,这个层将日常开发中频繁使用到的功能抽象出来,如多租户、多语言、仓储、配置中心等,形成易于替换的猎鹰10源码接口,大大提高了框架的灵活性和可扩展性。
MASA Framework包含个主要模块,几乎涵盖了日常开发所需的所有组件,从基础服务到高级功能应有尽有。这些模块协同工作,共同构建了一个强大且功能丰富的框架。
让我们从MASA Framework的核心设计——构建工厂(MasaFactory)开始探讨。构建工厂在框架中起着至关重要的作用,它负责通过配置选项来创建不同实现的实例。在实际项目中,构建工厂设计用于解决接口具有多种实现时的依赖注入问题,比如在面对多实现的场景时,如何优雅地注入并使用特定的实现类。以下是构建工厂解决多实现问题的具体步骤:
首先,通过下载MASA Framework的源码(地址:github.com/masastack/MA...)进行研究。我们首先关注的是Masa.BuildingBlocks.Data.Contracts类库的设计。MASA Framework的构建工厂通过选项配置,允许为接口的每个实现类指定一个简短的名称。根据传入的不同名称,构建工厂类的Create方法能够创建对应的实例。
通过使用MASA Framework的构建工厂,我们能够轻松地创建与特定名称对应的面单消息转换类,而无需依赖于IEnumerable集合进行复杂的筛选。这种方法在实现多实现场景时明显更加直观且高效。
以物流面单申请为例,不同销售订单对应不同的商家店铺,而每个商家店铺可能选择不同的物流商。利用MASA Framework构建工厂实现不同物流商的面单申请,不仅简化了开发过程,而且在使用层面保持了无感的效果。
总结而言,MASA Framework提供了强大的构建工厂设计,以解决多实现接口的依赖注入问题,简化了开发流程。这个设计不仅限于构建工厂模块,其他模块同样采用了类似的设计理念,允许用户根据需要替换官方实现或结合自定义实现,以适应不同场景和需求。
MASA Framework的其他模块同样采用了构建工厂的设计,用户既可以替换官方实现,也可以在程序内同时共存官方实现和自定义实现。例如,Service Caller模块不仅支持使用dapr的服务调用,还提供了HTTP服务调用等选项。
Vert.x 源码解析(4.x)——Context源码解析
Vert.x 4.x 源码深度解析:Context核心概念详解 Vert.x 通过Context这一核心机制,解决了多线程环境下的资源管理和状态维护难题。Context在异步编程中扮演着协调者角色,确保线程安全的资源访问和有序的异步操作。本文将深入剖析Context的源码结构,包括其接口设计、关键实现以及在Vert.x中的具体应用。Context源代码解析
Context接口定义了基础的事件处理功能,如立即执行和阻塞任务。ContextInternal扩展了Context,包含内部方法和功能,通常开发者无需直接接触,如获取当前线程的Context。在vertx的beginDispatch和endDispatch方法中,Context的切换策略取决于线程类型,Vertx线程会使用上下文切换,而非Vertx线程则依赖ThreadLocal。 ContextBase是ContextInternal的实现类,负责执行耗时任务,内部包含TaskQueue来管理任务顺序。WorkerContext和EventLoopContext分别对应工作线程和EventLoop线程的执行策略,它们通过execute()、runOnContext()和emit()方法处理任务,同时监控性能。 Context的创建和获取贯穿于Vert.x的生命周期,它在DeploymentManager的doDeploy方法中被调用,如NetServer和NetClient等组件的底层实现也依赖于Context来处理网络通信。额外说明
Context与线程并非直接绑定,而是根据场景动态管理。部署时创建新Context,非部署时优先获取Thread和ThreadLocal中的Context。当执行异步任务时,当前线程的Context会被暂时替换,任务完成后才恢复。源码中已加入详细注释,如需获取完整注释版本,可联系作者。 Context的重要性在于其在Vert.x的各个层面如服务器部署、EventBus通信中不可或缺,它负责维护线程同步与异步任务的执行顺序,是异步编程中不可或缺的基石。理解Context的实现,有助于更好地利用Vert.x进行高效开发。国产开发神器零代码搭建API接口开放/管理平台——YesApi
国产开发神器零代码搭建API接口开放/管理平台——YesApi
在寻找高效且国产的接口开发解决方案时,YesApi接口大师凭借其独特的优势脱颖而出。作为一款企业级平台,YesApi借助PhalApi Pro的专业版,通过低代码可视化方式,实现了零代码搭建API接口开发、开放和管理,同时支持接口计费功能。这款工具将技术架构设计为基于PhalApi开源接口框架和Vue前后端分离,为快速构建各类API接口平台提供了强大支持。 对于那些无需编程知识的用户,YesApi提供直观的界面操作,帮助他们全程通过界面进行API接口的生成、发布和管理。从安装部署,登录管理后台,再到生成接口、预览并发布,流程简单易懂。其在线接口文档生成功能和在线测试接口更是方便实用。 此外,YesApi v5.5版本更新后的在线接口编辑器极大地提升了开发效率,新手也能轻松上手。开发者只需在开放平台注册并申请接口权限,就能根据文档进行调用和开发,异步消息订阅和管理功能也得到增强。 升级至最新版5.5.0,需要备份原有代码并按照以下步骤操作:更新Admin和Platform管理后台的编译包,替换PHP后端源代码和数据库。确保在升级过程中数据的安全性。总结来说,YesApi接口大师凭借其零代码开发、开放、管理及计费功能,以及易用的界面和不断升级的工具,是国产开发中构建API接口的理想选择。
Flink Collector Output 接口源码解析
Flink Collector Output 接口源码解析
Flink中的Collector接口和其扩展Output接口在数据传递中起关键作用。Output接口增加了Watermark功能,是数据传输的基石。本文将深入解析collect方法及相关重要实现类,帮助理解数据传递的逻辑和场景划分。Collector和Output接口
Collector接口有2个核心方法,Output接口则增加了4个功能,WatermarkGaugeExposingOutput接口则专注于显示Watermark值。主要关注collect方法,它是数据发送的核心操作,Flink中有多个Output实现类,针对不同场景如数据传递、Metrics统计、广播和时间戳处理。Output实现类分类
Output类可以归类为:同一operatorChain内的数据传递(如ChainingOutput和CopyingChainingOutput)、跨operatorChain间(RecordWriterOutput)、统计Metrics(CountingOutput)、广播(BroadcastingOutputCollector)和时间戳处理(TimestampedCollector)。示例应用与调用链路
通过一个示例,我们了解了Kafka Source与Map算子之间的数据传递使用ChainingOutput,而Map到Process之间的传递则用RecordWriterOutput。在不同Output的选择中,objectReuse配置起着决定性作用,影响性能和安全性。 总结来说,ChainingOutput用于operatorChain内部,RecordWriterOutput处理跨chain,CountingOutput负责Metrics,BroadcastingOutputCollector用于广播,TimestampedCollector则用于设置时间戳。开启objectReuse会影响选择的Output类型。阅读推荐
Flink任务实时监控
Flink on yarn日志收集
Kafka Connector更新
自定义Kafka反序列化
SQL JSON Format源码解析
Yarn远程调试源码
State Processor API状态操作
侧流输出源码
Broadcast流状态源码解析
Flink启动流程分析
Print SQL Connector取样功能
iOS本地缓存方案之YYCache源码解析
简单列举一下,iOS的本地缓存方案有挺多,各有各的适用场景:
本文主要聊聊YYCache的优秀设计。高性能的线程安全方案是YYCache比较核心的一个设计目标,很多代码逻辑都是围绕性能这个点来做的。与TMMemoryCache方案相比,YYCache在同步接口的设计上采用了自旋锁来保证线程安全,但仍然在当前线程去执行读操作,这样就可以节省线程切换带来的开销。而TMCache在同步接口里面通过信号量来阻塞当前线程,然后切换到其他线程去执行读取操作,主要的性能损耗在这个线程切换操作上,同步接口没必要去切换线程执行。此外,使用dispatch_sync实现同步的方案也可以做到节省线程切换的开销,与加锁串行的方案相比,性能如何还需要进一步测试验证。除了高性能的本地存储方案,YYCache在本地持久化提高性能方面采取了策略,对于大于k的数据采取直接存储文件,然后在sqlite中存元信息;对于小于k的数据则直接存储在sqlite中。数据完整性保障方面,YYCache在存储文件时,存在数据库的元信息和实际文件的存储必须保障原子性。此外,YYCache还新增了实用功能,比如LRU算法,基于存储时长、数量、大小的缓存控制策略等。这些设计和功能使得YYCache在iOS本地缓存方案中具有较高的竞争力和实用性。
Java 集合(3)-- Iterable接口源码级别详解
Iterable接口是Java集合框架中的顶级接口,通过实现此接口,集合对象能够提供迭代遍历每一个元素的能力。Iterable接口于JDK1.5版本推出,最初包含iterator()方法,规定了遍历集合内元素的标准。实现Iterable接口后,我们能够使用增强的for循环进行迭代。
Iterable接口内部定义了默认方法,如iterator()、forEach()、spliterator(),这些方法扩展了迭代和并行遍历的灵活性和效率。iterator()方法用于获取迭代器,而forEach()方法允许将操作作为参数传递,实现对每个元素的处理。spliterator()方法则是为了支持并行遍历数据元素而设计,返回的是专门用于并行遍历的迭代器。
在Java 8中,forEach()方法的参数类型是java.util.function.Consumer,即消费行为接口,可以自定义动作处理元素。默认情况下,如果未自定义动作,迭代顺序与元素顺序保持一致。尝试分割迭代器(trySplit())可以在多线程环境中实现更高效的并行计算,虽然实际分割不总是完全平均,但能有效提升性能。
Iterable接口的实现确保了快速失败机制,即在遍历过程中删除或添加元素会抛出异常,以确保数据一致性。这种方法虽然限制了某些操作,但维护了集合数据的稳定性和可靠性。
总结而言,Iterable接口作为集合顶级接口,定义了迭代遍历的基本规范,通过实现此接口,集合类获得了迭代遍历的能力。它支持的默认方法如iterator()、forEach()和spliterator(),使得Java集合框架在迭代和并行处理方面更加灵活和高效。