1.OpenTelemetryãSpring Cloud SleuthãKafkaãJagerå®ç°åå¸å¼è·è¸ª
2.Spring Cloud Sleuth 原理简介和使用
3.springcloud2022ï¼
4.还在用Zipkin分布式服务链路追踪?源码来试试这个吧!
5.微服务实践之全链路追踪(sleuth,zipkin)详解-SpringCloud(2021.0.x)-4
OpenTelemetryãSpring Cloud SleuthãKafkaãJagerå®ç°åå¸å¼è·è¸ª
åå¸å¼è·è¸ªå¯è®©æ¨æ·±å ¥äºè§£ç¹å®æå¡å¨åå¸å¼è½¯ä»¶ç³»ç»ä¸ä½ä¸ºæ´ä½çä¸é¨åæ¯å¦ä½æ§è¡çãå®è·è¸ªåè®°å½ä»èµ·ç¹å°ç®çå°ç请æ±ä»¥åå®ä»¬ç»è¿çç³»ç»ãå¨æ¬æä¸ï¼æ们å°ä½¿ç¨ OpenTelemetryãSpring Cloud SleuthãKafka å Jaeger å¨ä¸ä¸ª Spring Boot å¾®æå¡ ä¸å®ç°åå¸å¼è·è¸ªã
æ们å æ¥ççåå¸å¼è¿½è¸ªä¸çä¸äºåºæ¬æ¯è¯ã
跨度ï¼è¡¨ç¤ºç³»ç»å çå个工ä½åå ã跨度å¯ä»¥ç¸äºåµå¥ä»¥æ¨¡æå·¥ä½çå解ãä¾å¦ï¼ä¸ä¸ªè·¨åº¦å¯è½æ£å¨è°ç¨ä¸ä¸ª REST 端ç¹ï¼ç¶åå¦ä¸ä¸ªå跨度å¯è½æ¯è¯¥ç«¯ç¹è°ç¨å¦ä¸ä¸ªï¼ççå¨ä¸åçæå¡ä¸ã
Traceï¼ææå ±äº«ç¸åæ ¹è·¨åº¦ç跨度éåï¼æè æ´ç®åå°è¯´ï¼å°ææ跨度å建为åå§è¯·æ±çç´æ¥ç»æã跨度çå±æ¬¡ç»æï¼æ¯ä¸ªè·¨åº¦å¨æ ¹è·¨åº¦æè¾¹é½æèªå·±çç¶è·¨åº¦ï¼å¯ç¨äºå½¢ææåæ ç¯å¾ï¼æ¾ç¤ºè¯·æ±å¨éè¿åç§ç»ä»¶æ¶çè·¯å¾ã
OpenTelemetry ï¼ä¹ç®ç§°ä¸º OTelï¼æ¯ä¸ä¸ªä¾åºåä¸ç«çå¼æº Observability æ¡æ¶ï¼ç¨äºæ£æµãçæãæ¶éå导åºé¥æµæ°æ®ï¼ä¾å¦ è·è¸ª ã ææ å æ¥å¿ ãä½ä¸º äºåç 计ç®åºéä¼ (CNCF) çåµå项ç®ï¼OTel æ¨å¨æä¾ä¸ä¾åºåæ å ³çç»ä¸åºå API éââ主è¦ç¨äºæ¶éæ°æ®å¹¶å°å ¶ä¼ è¾å°æå¤ãOTel æ£å¨æ为çæå管çé¥æµæ°æ®çä¸çæ åï¼å¹¶è¢«å¹¿æ³éç¨ã
Sleuth æ¯ä¸ä¸ªç± Spring Cloud å¢é管çåç»´æ¤ç项ç®ï¼æ¨å¨å°åå¸å¼è·è¸ªåè½éæå° Spring Boot åºç¨ç¨åºä¸ãå®ä½ä¸ºä¸ä¸ªå ¸åSpring Starterç . 以ä¸æ¯ä¸äºå¼ç®±å³ç¨ç Sleuth å·¥å ·ï¼
Sleuth æ·»å äºä¸ä¸ªæ¦æªå¨ï¼ä»¥ç¡®ä¿å¨è¯·æ±ä¸ä¼ éææè·è¸ªä¿¡æ¯ãæ¯æ¬¡è°ç¨æ¶ï¼é½ä¼å建ä¸ä¸ªæ°ç Spanãå®å¨æ¶å°ååºåå ³éã
Sleuth è½å¤è·è¸ªæ¨ç请æ±åæ¶æ¯ï¼ä»¥ä¾¿æ¨å¯ä»¥å°è¯¥éä¿¡ä¸ç¸åºçæ¥å¿æ¡ç®ç¸å ³èãæ¨è¿å¯ä»¥å°è·è¸ªä¿¡æ¯å¯¼åºå°å¤é¨ç³»ç»ä»¥å¯è§å延è¿ã
Jaeger æåç± Uber çå¢éæ建ï¼ç¶åäº å¹´å¼æºãå®äº 年被æ¥å为äºåçåµå项ç®ï¼å¹¶äº å¹´æ¯ä¸ãä½ä¸º CNCF çä¸é¨åï¼Jaeger æ¯äºåç æ¶æ ä¸å ¬è®¤ç项ç®ãå®çæºä»£ç 主è¦æ¯ç¨ Go ç¼åçãJaeger çæ¶æå æ¬ï¼
ä¸ Jaeger 类似ï¼Zipkin å¨å ¶æ¶æä¸ä¹æä¾äºç¸åçç»ä»¶éã尽管 Zipkin æ¯ä¸ä¸ªè¾èç项ç®ï¼ä½ Jaeger å ·ææ´ç°ä»£åå¯æ©å±ç设计ã对äºæ¤ç¤ºä¾ï¼æ们éæ© Jaeger ä½ä¸ºå端ã
让æ们设计ä¸ä¸ª Spring Boot å¾®æå¡ï¼
è¿ä¸ä¸ªå¾®æå¡æ¨å¨ï¼
è¿æ¯ä¸ºäºè§å¯ OpenTelemetry å¦ä½ç»å Spring Cloud Sleuth å¤ç代ç çèªå¨æ£æµä»¥åçæåä¼ è¾è·è¸ªæ°æ®ãä¸é¢çè线æè·äºå¾®æå¡å¯¼åºçè·è¸ªæ°æ®çè·¯å¾ï¼éè¿OTLPï¼OpenTelemetry Protocolï¼ä¼ è¾å°OpenTelemetry Collectorï¼æ¶éå¨ä¾æ¬¡å¤ç并å°è·è¸ªæ°æ®å¯¼åºå°å端Jaegerè¿è¡åå¨åæ¥è¯¢ã
ä½¿ç¨ monorepoï¼æ们ç项ç®ç»æå¦ä¸ï¼
第 1 æ¥ï¼æ·»å POM ä¾èµé¡¹
è¿æ¯ä½¿ç¨ OTel å Spring Cloud Sleuth å®ç°åå¸å¼è·è¸ªçå ³é®ãæ们çç®æ æ¯ä¸å¿ æå¨æ£æµæ们ç代ç ï¼å æ¤æ们ä¾é è¿äºä¾èµé¡¹æ¥å®æå®ä»¬è®¾è®¡çå·¥ä½ââèªå¨æ£æµæ们ç代ç ï¼é¤äºè·è¸ªå®ç°ãå°é¥æµæ°æ®å¯¼åºå° OTel æ¶éå¨çã
第 2 æ¥ï¼OpenTelemetry é ç½®
OpenTelemetry æ¶éå¨ç«¯ç¹
对äºæ¯ä¸ªå¾®æå¡ï¼æ们éè¦å¨å ¶ä¸æ·»å 以ä¸é ç½®application.ymlï¼è¯·åé ä¸é¢é¨åä¸ç示ä¾ç段ï¼ãspring.sleuth.otel.exporter.otlp.endpoint主è¦æ¯é ç½®OTel Collector端ç¹ãå®åè¯å¯¼åºå¨ï¼å¨æ们çä¾åä¸æ¯ Sleuthï¼éè¿ OTLP å°è·è¸ªæ°æ®åéå°æå®çæ¶éå¨ç«¯ç¹.hutool.core.collection.CollectionUtil;
importcom.netflix.hystrix.HystrixCommandGroupKey;
importcom.netflix.hystrix.HystrixCommandKey;
importcom.netflix.hystrix.HystrixCommandProperties;
importcom.netflix.hystrix.HystrixObservableCommand;
importcom.netflix.hystrix.exception.HystrixRuntimeException;
importorg.springframework.beans.factory.ObjectProvider;
importorg.springframework.cloud.gateway.filter.GatewayFilter;
importorg.springframework.cloud.gateway.filter.GatewayFilterChain;
importorg.springframework.cloud.gateway.filter.factory.AbstractGatewayFilterFactory;
importorg.springframework.cloud.gateway.support.ServerWebExchangeUtils;
importorg.springframework.cloud.gateway.support.TimeoutException;
importorg.springframework.core.annotation.AnnotatedElementUtils;
importorg.springframework.mand;
if(CollectionUtil.isNotEmpty(apiTimeoutList)){
//requestå¹é å±äºé£ç§æ¨¡å¼
ApiHystrixTimeoutapiHystrixTimeout=getApiHystrixTimeout(apiTimeoutList,源码path);command=newUnicornRouteHystrixCommand(config.getFallbackUri(),exchange,chain,initSetter(apiHystrixTimeout.getApiPattern(),apiHystrixTimeout.getTimeout()));}else{
command=newUnicornRouteHystrixCommand(config.getFallbackUri(),exchange,chain,initSetter(serviceId(exchange),null));
}
returncommand;
}/
***@paramapiTimeoutList*@parampath*@return*/privateApiHystrixTimeoutgetApiHystrixTimeout(ListapiTimeoutList,Stringpath){for(ApiHystrixTimeoutapiTimeoutPattern:apiTimeoutList){
if(this.antPathMatcher.match(apiTimeoutPattern.getApiPattern(),path)){
returnapiTimeoutPattern;
}}
ApiHystrixTimeoutapiHystrixTimeout=newApiHystrixTimeout();
apiHystrixTimeout.setApiPattern("default");
apiHystrixTimeout.timeout=null;
returnapiHystrixTimeout;
}@Override
publicGatewayFilterapply(Configconfig){return(exchange,chain)-{
UnicornRouteHystrixCommandcommand=initUnicornRouteHystrixCommand(exchange,chain,config);
returnMono.create(s-{Subscriptionsub=command.toObservable().subscribe(s::success,s::error,s::success);
s.onCancel(sub::unsubscribe);
}).onErrorResume((Function)throwable-{if(throwableinstanceofHystrixRuntimeException){
HystrixRuntimeExceptione=(HystrixRuntimeException)throwable;
HystrixRuntimeException.FailureTypefailureType=e.getFailureType();switch(failureType){caseTIMEOUT:
returnMono.error(newTimeoutException());
caseCOMMAND_EXCEPTION:{
Throwablecause=e.getCause();
if(causeinstanceofResponseStatusException||AnnotatedElementUtils.findMergedAnnotation(cause.getClass(),ResponseStatus.class)!=null){
returnMono.error(cause);
}}
default:
break;
}}
还在用Zipkin分布式服务链路追踪?来试试这个吧!
微服务架构的兴起,为全球企业带来了转型的源码机遇与挑战。微服务的源码双刃剑效应,在带来诸多优势的源码同时,亦对运维、源码ucocii源码性能监控及错误排查提出了严峻考验。源码面对大型项目中服务节点的源码繁多与请求链路的复杂,分布式系统的源码APM管理系统应运而生,旨在帮助理解系统行为,源码分析性能问题,源码快速定位和解决问题。源码
APM系统,源码全称Application Performance Monitor,源码是源码如何更改源码时区显示用于监控和管理应用程序性能的工具。谷歌的Dapper论文,作为最早的APM系统原型,为开发者和运维团队提供了强大支持。基于Dapper原理,Pinpoint、SkyWalking等出色APM框架相继问世。SpringCloud官网也集成了一套基于Zipkin的系统:Spring Cloud Sleuth。
APM系统的基本原理主要围绕Google Dapper设计的几个核心概念:Span(请求的基本工作单元)与Trace(一次完整的调用链路,包含多个Span的树状结构,具有唯一的TraceID)。通过spanId、parentId,请求的每个链路得以串联。每次请求从发起至服务器开始,裂变元素和同化源码至返回response结束,每个span共享相同的唯一标识trace_id。
在选择APM框架时,主要需考虑以下几方面:探针的性能、收集器的可扩展性、全面的调用链路数据分析能力、对开发的透明性以及对应用拓扑的完整展现。Zipkin、Pinpoint与SkyWalking等框架各有优劣,SkyWalking凭借其在探针性能、开发透明性与数据分析能力上的优势,以及部署的便利性,成为了中小型企业的理想选择。
SkyWalking是强力买卖指标公式源码一款提供分布式追踪功能的系统,自年起发展成为完整的APM解决方案。它适用于追踪、监控和诊断分布式系统,特别是在使用微服务架构、云原生或容积技术的场景。SkyWalking提供了分布式追踪与上下文传输、应用实例与服务性能指标分析、根源分析、应用拓扑分析、应用和服务依赖分析、慢服务检测、性能优化等主要功能。
其特色包括多语言探针或类库支持、Java自动探针,逆战人物透视源码无需修改源码即可追踪和监控程序、社区提供的其他多语言探针、.NET Core与Node.js支持、多种后端存储选择、与OpenTracing API协同工作、轻量级、完善功能的后端聚合与分析、现代化Web UI、日志集成以及应用、实例和服务的告警。
为了使用SkyWalking,需要先确保Linux环境中的Elasticsearch服务已启动,并开放相应端口。安装过程分为三步:下载安装包、安装Skywalking的OAP服务和WebUI、部署微服务探针。在完成安装后,通过访问WebUI(默认端口为)可查看服务实例的性能监控、服务拓扑图、请求链路追踪信息与表格视图。
本文内容由黑马程序员Java培训学院编写并发布,欢迎转载,但需注明作者及出处,以尊重版权。
微服务实践之全链路追踪(sleuth,zipkin)详解-SpringCloud(.0.x)-4
本文介绍微服务架构中链路追踪组件Sleuth与Zipkin在SpringCloud入门的使用。
链路追踪为何重要?在微服务中,服务间频繁调用,若调用链路出现问题,追踪请求路径、服务耗时变得困难。特别是服务数量增加到个时,链路追踪显得至关重要。
链路追踪基于Dapper论文原理,Dapper论文提供了分布式追踪的核心概念,如Trace(跟踪)、Span(跨度)、Annotations(注解)、Sampling(采样率)等。追踪链路包括一个全局唯一标识的traceId和每个跨度的唯一spanId,记录服务名称、IP、调用时间等信息,采样率用于在高并发下高效采集。
在SpringCloud中,通过Sleuth和Zipkin实现全链路追踪。Sleuth负责信息采集,Zipkin负责处理与展示。
部署Zipkin服务需安装并配置Docker和MySQL数据库。Docker-compose文件用于启动服务,执行SQL脚本创建表。
在POM文件中引入Sleuth和Zipkin依赖。配置Zipkin服务地址及采样率(测试中设置为%)。每个服务配置才能实现全链路追踪。
引入Sleuth starter自动在调用中添加追踪信息。例如,OpenFeign接口调用会输出日志,显示traceId和spanId,传递至Zipkin。
登录Zipkin后台查看链路详情。使用浏览器访问http://localhost:,可按条件查询链路,展示调用链、每个跨度耗时,定位性能瓶颈,优化服务。
Zipkin展示动态链路图,直观显示服务间调用关系。利用traceId查询特定链路,获取详细信息。追踪可视化,有助于快速定位问题。
本文介绍了SpringCloud中链路追踪的基础使用,实践操作需在实际项目中深入探索与优化。
相关源代码可在GitHub上查找:master-microservice。