【electron项目例子源码】【openpyxl源码怎么读】【c源码编译exe】源码虚拟机

来源:男宠 游戏 源码

1.kvm虚拟机(关于kvm虚拟机的源码基本详情介绍)
2.QEMU虚拟机、源码 虚拟化与云原生
3.虚拟机介绍
4.Xen应用领域
5.Lua5.4 源码剖析——虚拟机2 之 闭包与UpValue
6.深入理解 Python 虚拟机:列表(list)的虚拟实现原理及源码剖析

源码虚拟机

kvm虚拟机(关于kvm虚拟机的基本详情介绍)

       Kernel-based Virtual Machine,简称KVM,源码是虚拟Linux系统中的一款开源虚拟化模块。自从集成在Linux 2.6.版本后,源码KVM在各个主要发行版本中得到了广泛采用。虚拟electron项目例子源码KVM使用Linux自身的源码调度器进行管理,相较于Xen,虚拟其核心源代码相对较少,源码因此在性能和资源消耗方面有着优势。虚拟

       KVM因其在学术界的源码广泛应用,已成为主流的虚拟系统虚拟化管理程序之一。为了实现虚拟化,源码KVM要求硬件支持,虚拟如Intel VT技术或AMD V技术,源码这使得它成为基于硬件的完全虚拟化解决方案。相较于早期基于软件模拟的Para-Virtualization方式的Xen,KVM在性能和稳定性上有着明显优势。尽管Xen拥有独立的进程调度器、存储管理模块等,但其代码量较大。

       在商业系统虚拟化软件领域,VMware ESX系列是基于软件模拟的Full-Virtualization的代表。与KVM相比,VMware ESX系列在功能、管理界面等方面更为成熟,但其硬件资源消耗和管理复杂性也相对较高。总体而言,KVM凭借其开源、性能稳定和资源高效的特点,在学术研究和中小企业应用中展现出强大的生命力。

QEMU虚拟机、源码 虚拟化与云原生

       QEMU,全称为Quick Emulator,是Linux下的一款高性能的虚拟机软件,广泛应用于测试、开发、教学等场景。QEMU具备以下特点:

       QEMU与KVM的关系紧密,二者分工协作,openpyxl源码怎么读KVM主要负责处理虚拟机的CPU、内存、IO等核心资源的管理,而QEMU则主要负责模拟外设、提供虚拟化环境。KVM仅模拟性能要求较高的虚拟设备,如虚拟中断控制器和虚拟时钟,以减少处理器模式转换的开销。

       QEMU的代码结构采用线程事件驱动模型,每个vCPU都是一个线程,处理客户机代码和模拟虚拟中断控制器、虚拟时钟。Main loop主线程作为事件驱动的中心,通过轮询文件描述符,调用回调函数,处理Monitor命令、定时器超时,实现VNC、IO等功能。

       QEMU提供命令行管理虚拟机,如输入"savevm"命令可保存虚拟机状态。QEMU中每条管理命令的实现函数以"hmp_xxx"命名,便于快速定位。

       QEMU的编译过程简便,先运行configure命令配置特性,选择如"–enable-debug"、"–enable-kvm"等选项,然后执行make进行编译。确保宿主机上安装了如pkg-config、zlib1g-dev等依赖库。安装完成后,可使用make install命令将QEMU安装至系统。

       阅读QEMU源码时,可使用Source Insight 4.0等工具辅助。下载安装说明及工具文件,具体安装方法参考说明文档。QEMU源码可在官网下载,qemu.org/download/。

       QEMU与KVM的c源码编译exe集成提供了强大的虚拟化能力,广泛应用于虚拟机管理、测试、开发等场景。本文介绍了QEMU的核心特性和使用方法,帮助初次接触虚拟化技术的用户建立基础认知。深入了解QEMU与KVM之间的协作,以及virtio、virtio-net、vhost-net等技术,将为深入虚拟化领域打下坚实基础。

虚拟机介绍

       虚拟机(virtual machine)是计算机科学中一种特殊的软件,它可以在计算机平台和终端用户之间创建一种环境,使用户在该环境中操作软件。

       市面上有许多虚拟机软件,以下列举几种常用:

       1. Virtual PC:适合运行各种Windows操作系统,操作简便,占用资源小,直接联网无需额外设置。

       2. VMware:兼容性好,具备强大的工具和快照功能,方便调试软件,虚拟网卡需设置使用桥接,无需NAT。

       3. VirtualBox:轻量级开源平台,安装包小,功能精简,快照功能相对不便,文件共享需设置数据空间。

       4. KVM:Linux下全功能虚拟化解决方案,提供私有硬件支持,如网卡、磁盘和图形适配卡。

       5. Xen:开放源代码虚拟机监视器,支持多种操作系统,无需特殊硬件,高性能虚拟化。

       以上是常用虚拟机软件的介绍,还有更多选择。

       最佳虚拟机软件推荐如下:

       1. VMware

       2. VMware Fusion

       3. Oracle VM VirtualBox

       4. Parallels 桌面

       5. QEMU

       6. Virtual Box

       7. Boot Camp

       8. Citrix Hypervisor

       9. HyperV

       . Red Hat Virtualization

Xen应用领域

       Xen凭借其卓越的QQ飞车scs源码虚拟化性能,在多个领域中展现出广泛应用的潜力。首先,服务器整合方面,Xen通过在单个物理主机上创建多个虚拟服务器,允许用户安装并管理不同的应用程序,从而高效利用硬件资源,实现服务器应用的灵活迁移。

       在软件开发和测试环节,利用Linux的低成本特性,Xen使得开发者能够轻松构建和测试多个平台,显著节省了开发成本,提高了开发效率。这种灵活性极大地推动了软件开发流程的优化。

       在集群运算中,与管理单个物理主机相比,Xen的虚拟机管理更为便捷,负载均衡控制和隔离性能优秀,为复杂的集群环境提供了强大的支持。

       对于多操作系统配置,Xen提供了理想的环境,特别适合于开发和测试目的,允许用户在同一时间运行多个操作系统,便于并行测试和比较。

       在内核开发领域,Xen的虚拟机环境作为安全的沙箱,为内核测试和调试提供了便利,无需额外配置独立机器,节省了资源和时间。

       最后,Xen还支持为客户操作系统提供硬件技术支持,开发者可以利用现有的操作系统广泛的硬件兼容性,如Linux,来开发和优化新的操作系统,这进一步扩展了其应用范围。

扩展资料

       Xen 是一个开放源代码虚拟机监视器,由剑桥大学开发。它打算在单个计算机上运行多达个满特征的操作系统。操作系统必须进行显式地修改(“移植”)以在Xen上运行(但是提供对用户应用的兼容性)。这使得Xen无需特殊硬件支持,wr威廉指标源码就能达到高性能的虚拟化。

Lua5.4 源码剖析——虚拟机2 之 闭包与UpValue

       故事将由我们拥有了一段 Lua 代码开始,我们先用 Lua 语言写一段简单的打印一加一计算结果的 Lua 代码,并把代码保存在 luatest.lua 文件中:

       可执行的一个 Lua 文件或者一份单独的文本形式 Lua 代码,在 Lua 源码中叫做 "Chunk"。无论我们通过什么形式去执行,或者用什么编辑器去执行,最终为了先载入这段 Lua 的 Chunk 到内存中,无外乎会归结到以下两种方式:1)Lua 文件的载入:require 函数 或 loadfile 函数;2)Lua 文本代码块的载入:load 函数;这两种方式最终都会来到下面源码《lparse.c》luaY_parser 函数。该函数是解析器的入口函数,负责完成代码解析工作,最终会创建并返回一个 Lua 闭包(LClosure),见下图的红框部分:

       另外,上图中间有一行代码最终会调用到 statement 函数,statement 函数是 Chunk 解析的核心函数,它会一个一个字符地处理我们编写的 Lua 代码,完成词法分析和语法分析工作,想要了解字符处理整个状态流程的可以自行研读该部分源码,见源码《lparse.c》statement 函数部分代码:

       完成了解析工作之后,luaY_parser 函数会把解析的所有成果放到 Lua 闭包(LClosure)对象之中,这些存储的内容能保证后续执行器能正常执行 Lua 闭包对应的代码。

       Lua 闭包由 Proto(也叫函数原型)与 UpValue(也叫上值)构成,见源码《lobject.h》LClosure 定义,我们下面将进行详细的讲解:

       UpValue 是 Lua 闭包数据相关的,在 Lua 的函数调用中,根据数据的作用范围可以把数据分为两种类型:1)内部数据:函数内部自己定义的数据,或者通过函数参数的形式传入的数据(在 Lua 中通过参数传入的数据本质上也是先赋值给一个局部变量);2)外部数据:在函数的更外层进行定义,脱离了该函数后仍然有效的数据;外部数据在我们的 Lua 闭包中就是 UpValue,也叫上值。

       既然 Lua 支持函数嵌套,也知道了 UpValue 本质就是上层函数的内部数据。那么 UpValue 有必要存储于 Lua 闭包(LClosure)结构体当中吗?是为了性能考虑而做的一层指针引用缓存吗?回答:并不是基于性能的考虑,因为在实际的 Lua 运用场景中,函数嵌套的层数通常来说不会太多,个别函数多一层的查询访问判断不会带来过多的性能开销。需要在闭包当中存储 UpValue 主要原因是因为内存。Lua 作为一门精致小巧的脚本语言,设计初衷不希望占用过多的系统内存,它会尽量及时地清理内存中用不到的对象。在嵌套函数中,内层函数如果仍然有被引用处于有效状态,而外层函数已经没有被引用了已经无效了,此时 Lua 支持在保留内层函数的情况下,对外层函数进行清除,从而可以清理掉外层函数引用的非当前函数 UpValue 用途以外的大量数据内存。

       尽管外层函数被清除了,Lua 仍然可以保持内层函数用到的 UpValue 值的有效性。UpValue 如何能继续保持有效,我们在之前的基础教程《基本数据类型 之 Function》里面学习过,主要是因为 UpValue 有 open 与 close 两种状态,当外层函数被清除的时候,UpValue 会有一个由 open 状态切换到 close 状态的过程,会对数据进行一定的处理,感兴趣的同学可以回到前面复习一下。

       UpValue 有效性例子

       接下来我们举一个代码例子与一个图例,表现一下 UpValue 在退出外层函数后仍然生效的情况,看一下可以做什么样的功能需求,加深一下印象,请看代码与注释:

       上述代码在执行 OutFunc 函数后,外层的 globalFunc 函数变量完成了赋值,每次对它进行调用,都将可以对它引用的 UpValue 值即 outUpValue 变量进行正常加 1。

       函数的内部数据属于函数自身的内容,外部其它函数无法通过直接的方式访问其它函数的内部数据。函数自身的东西会存在于 LClosure 结构体的 Proto*p 字段中。Proto 全称 "Function Prototypes",通常也可以叫做 "函数原型",我们来看一下它的定义,见源码《lobject.h》Proto 结构体:

       结构体字段比较多,我们先不细看,后面用到哪个字段会再进行补充说明。函数的内部数据分为常量与变量(即函数局部变量),分别对应上图的如下字段:

       1)常量:TValue* k 为指针指向常量数组;int sizek 为函数内部定义的常量个数,也即常量数组 k 的元素个数。

       2)局部变量:LocVar* locvars 为指针指向局部变量数组;int sizelocvars 为函数定义的局部变量个数,也即局部变量数组 locvars 的元素个数。

       UpValue 的描述信息会存储在 Proto 结构体中的 Upvaldesc* upvalues 字段,解析器解析 Lua 代码的时候会生成这个 UpValue 描述信息,并用于生成指令,而执行器运行的时候可以通过该描述信息方便快速地构建出真正的 UpValue 数组。

       至此,我们知道了函数拥有 UpValue,有常量,有局部变量。外部数据 UpValue 也讲完,内部数据也讲完。接下来,我们开始学习函数运行的逻辑指令相关内容。

       函数逻辑指令存储于函数原型 Proto 结构体中,这些函数逻辑是由一行行的 Lua 代码构成的,代码会被解析器翻译成 Lua 虚拟机能识别的指令,我们把这些指令称为 "OpCode",也叫 "操作码"。Proto 结构体存储 OpCode 使用的是下图中红框部分字段,见源码《lobject.h》Proto 结构体:

       至此,我们可以简单提前说一下 Lua 虚拟机的功能了,本质上来看,Lua 虚拟机的工作,就是为当前函数(或者当前一段 OpCode 数组)准备好数据,然后有序执行 OpCode 指令。

       对 OpCode 有了一定的认识了,接下来我们要补充一个 OpCode 相关的 Lua 闭包相关的内容,就是 Lua 闭包的运行环境。

       一个 Lua 文件在载入的时候会先创建出一个最顶层(Top level)的 Lua 闭包,该闭包默认带有一个 UpValue,这个 UpValue 的变量名为 "_ENV",它指向 Lua 虚拟机的全局变量表,即_G 表,可以理解为_G 表即为当前 Lua 文件中代码的运行环境 (env)。事实上,每一个 Lua 闭包它们第一个 UpValue 值都是_ENV。

       ENV 的定义在我们之前提到的解析器相关函数 mainfunc 中,见源码《lparser.c》:

       如果想要设置这个载入后的初始运行环境不使用默认的 _G 表,除了直接在该文件代码中重新赋值_ENV 变量这种粗暴且不推荐的方式以外,通常是通过我们前面提到的加载 Lua 文件函数或加载 Lua 字符串代码函数传入 env 参数(Table 类型),就可以用自定义的 Table 作为当前 Lua 闭包的全局变量环境了,env 参数为上面两个函数的最末尾一个参数,'[' 与 ']' 字符中的内容表示参数可选,函数的定义摘自 Lua5.4 官网文档:

       所以我们可以在 Lua 代码通过 _ENV 访问当前环境:

       在 Lua 的旧版本中,变量的查询最多会分为 3 步:1)先从函数局部变量中进行查找;2)找不到的话就从 UpValue 中查找;3)还找不到就从全局环境默认 _G 表查找。而在 Lua5.4 中,把 UpValue 与全局 _G 表的查询统一为 UpValue 查询,并把一些操作判断提前到了解析器解析阶段进行,例如函数内部使用的某个 UpVaue 变量在代码解析的时候就可以通过 UpValue 描述信息知道存储于 Lua 闭包 upvals 数组的哪个下标位置,在执行器运行的时候只需要直接在数组拿取对应下标的这个 UpValue 数据即可。

       从 OpCode 的层面来看,Lua 除了支持通过一个 UpValue 数组下标访问一个 UpValue 变量,在把 _G 表合并到 UpValue 之后,Lua 为此实现了通过一个字符串 key 值从某个 Table 类型的 UpValue 中查询变量的操作。

       至此,我们了解了 Lua 闭包的结构与运行环境,以及 OpCode 的基本概念。接下来,我们将深入学习 OpCode,掌握 OpCode 就掌握了整个 Lua 虚拟机数据与逻辑的流向。

深入理解 Python 虚拟机:列表(list)的实现原理及源码剖析

       深入理解 Python 虚拟机:列表(list)的实现原理及源码剖析

       在 Python 虚拟机中,列表作为基本数据类型之一,能够存储各种类型的数据并支持多种操作。本文将详细解析列表在 cpython 实现中的结构和关键操作的源代码。

       列表结构解析

       在 cpython 实现中,列表由一系列元素构成,每个元素由一个指针指向 Python 对象。列表还包含一个表示元素数量的字段,一个用于存储列表长度的字段,以及一个用于存储对象引用计数的字段。

       创建和扩容机制

       创建列表时,不会直接分配内存,而是将需要释放的内存地址保存在数组中,以便下次创建列表时复用。列表扩容时,通过检查当前容量并相应地增加,以适应新添加的元素。

       插入和删除操作

       插入元素时,将插入位置及其后元素后移一位。删除元素时,将后续元素前移,直至空位。

       复制操作

       列表复制分为浅拷贝和深拷贝。浅拷贝仅复制对象的指针,改变原始列表中的元素会影响复制后的列表。深拷贝则复制对象及其内部内容,确保复制后的列表独立于原始列表。

       列表清理和反转

       清空列表时,将元素数量字段设置为零,并减少所有对象的引用计数,以便在计数为零时自动释放内存。反转列表使用交换元素指针实现,不改变元素值。

       总结

       本文深入介绍了 Python 列表的内部实现,包括创建、扩容、插入、删除、复制、清理和反转等操作的源代码。理解这些细节有助于更高效地编写 Python 代码并深入掌握 Python 的内部机制。

Java虚拟机(Java Virtual Machine,简称JVM)

       Java虚拟机(JVM)是Java语言的基础,负责执行Java字节码。它实现跨平台性,使Java程序能在不同硬件和操作系统上运行,无需修改代码。编写的Java源代码生成字节码,JVM加载并执行。提供内存管理、垃圾回收、安全性、线程管理等功能,确保程序稳定、安全、兼容。JVM适用于Windows、Linux、macOS等系统,实现代码一次编写,到处运行。

       核心功能包括:解释或编译字节码为本地机器代码,实现程序执行;提供丰富的内存管理、安全性和多线程支持,保障程序可靠性和安全性;确保跨平台兼容性,无需针对特定平台修改代码。字节码与不同系统的JVM结合,构成Java语言“一次编译,随处运行”的独特优势。

       综上所述,JVM作为Java程序运行的核心,其功能强大,确保了Java语言的跨平台性、稳定性和安全性。它将字节码转换为本地代码,执行程序。通过内存管理、垃圾回收、安全机制和线程管理,确保程序在各种环境下运行顺畅。字节码与不同操作系统上的JVM协同工作,实现了Java程序的“一次编写,到处运行”。

       Java虚拟机(JVM)作为Java程序执行的关键,实现跨平台性,确保程序在不同系统上稳定运行。它执行字节码,提供内存管理、垃圾回收、安全和线程支持,保障Java程序的可靠性和兼容性。通过将字节码转换为本地代码,JVM使Java程序能够在Windows、Linux、macOS等操作系统上运行,实现“一次编译,到处运行”的优势。

文章所属分类:休闲频道,点击进入>>