1.Redis 源码源码剖析 3 -- redisCommand
2.Redis 源码分析字典(dict)
3.Redis源码剖析之数据过期(expire)
4.[redis 源码走读] maxmemory 数据淘汰策略
5.Redis7.0源码阅读:哈希表扩容、缩容以及rehash
6.用 Redis 源码搞定游戏中的实时排行榜,附源码!源码
Redis 源码源码剖析 3 -- redisCommand
Redis 使用 redisCommand 结构体处理命令请求,其内包含一个指向对应处理函数的源码 proc 指针。redisCommandTable 是源码WordPress约拍源码一个存储所有 Redis 命令的数组,位于 server.c 文件中。源码此数组通过 populateCommandTable() 函数填充,源码该函数将 redisCommandTable 的源码内容添加到 server.commands 字典,将 Redis 源码支持的所有命令及其实现整合。
populateCommandTable() 函数中包含 populateCommandTableParseFlags() 子函数,源码用于将 sflags 字符串转换为对应的源码 flags 值。lookupCommand*() 函数族负责从 server.commands 中查找相应的源码命令。
Redis 源码源码分析字典(dict)
Redis 的内部字典世界:从哈希表到高效管理的深度解析
Redis,作为开源的源码高性能键值存储系统,其内部实现的字典数据结构是其核心组件之一。这个数据结构采用自定义的哈希表——dictEntry,巧妙地存储和管理着键值对。让我们一起深入理解这一强大工具的运作机制。
首先,Redis的字典是基于哈希表的,通过哈希函数将键转换为数组索引,实现高效查找。dictEntry结构巧妙地封装了键(key)、值(value)以及指向下一个节点的指针,构成了数据存储的基本单元。同时,dict包含一系列操作函数,包括哈希计算、键值复制、比较以及销毁操作,这些函数的指针类型(dictType)和实际数据结构共同构建了其高效性能。
在字典的管理中,rehash是一个关键概念,它标志着哈希表的重新分布过程。rehash标志是一个计数器,用于跟踪当前哈希表实例的状态,确保在负载过高时进行扩容。当ht_used[0]非零,且满足特定条件(如元素数量超过初始桶数),服务器会触发resize操作,这通常在serverCron定时任务中进行,以避免磁盘I/O竞争。
rehash过程中,Redis采取渐进式策略,通过dictRehash函数,逐个移动键值对到新哈希表,乾坤nb买卖源码确保操作的线程安全。为了避免长时间阻塞,这个过程被分散到函数中,并通过serverCron定时任务,以毫秒级的步长进行,确保在无磁盘写操作时进行。
在处理过期键时,dictRehashMilliseconds()函数扮演重要角色,它在rehash时监控时间消耗,确保性能。rehash过程中,dictAdd负责插入新哈希表,而dictFind和dictDelete则需处理ht_table[0]和ht_table[1]的键值对。
Redis的默认哈希算法采用SipHash,保证了数据的分布均匀性。在持久化时,负载因子默认设置为5,而rehash后,数据结构会采用迭代器的形式,分为安全和非安全两种,以满足不同场景的需求。
在实际操作中,如keysCommand,会选择安全模式以避免重复遍历,而在处理大规模数据时,如scan命令,可能需要使用非安全模式,但需注意可能带来的问题。
总的来说,Redis的字典数据结构是其高效性能的基石,通过精细的哈希管理、rehash策略以及迭代器设计,确保了在高并发和频繁操作下的稳定性和性能。深入理解这些内部细节,对于优化Redis性能和应对复杂应用场景至关重要。
Redis源码剖析之数据过期(expire)
通过对线上数据访问时间分布的统计发现,大部分请求只访问最新分钟或1小时的数据,极少访问超过1天的数据。这使得我们在存储数据时可以优化过期时间,例如将过期时间从2天缩短到1天,从而节省大量 Redis 实例资源,节省内存使用量和成本。
Redis 自动清理过期数据的机制可以有效节省资源,而没有自动过期机制时,实现数据清理将非常复杂。自动过期功能不仅简化了操作,如何下载mysql源码还能节省成本,体现了其在缓存系统中的重要性。
Redis 在处理请求时,会检查 key 是否过期。在 dictEntry 结构中存储了上次更新时间戳,通过比较当前时间与更新时间戳之间的差值与设定的过期时间,判断 key 是否过期。
Redis 提供了懒惰删除功能,即在开启配置项后,会异步处理数据删除任务,防止阻塞主线程。然而,实际实现并非完全异步,而是结合了同步和异步机制,以优化性能。
为了解决数据写入后长时间无访问导致的资源占用问题,Redis 实现了定期抽样删除策略。通过单线程执行的核心流程,Redis 无法长时间暂停执行其他工作,因此定期清理时仅做少量操作,以避免长时间阻塞。
Redis 数据过期策略简单,但需考虑性能影响。配置过期时间应根据业务需求和数据特性调整,以实现最佳性能和资源利用。
本文深入探讨了 Redis 过期数据的实现,包括实时清理、惰性删除和定期抽样删除策略。同时提供了 Redis 中文注释版和源码剖析专栏链接,欢迎关注和学习。如有帮助,欢迎一键三连支持。
[redis 源码走读] maxmemory 数据淘汰策略
Redis 是一个内存数据库,通过配置 `maxmemory` 来限定其内存使用量。当 Redis 主库内存超出限制时,会触发数据淘汰机制,以减少内存使用量,直至达到限制阈值。
当 `maxmemory` 配置被应用,Redis 会根据配置采用相应的数据淘汰策略。`volatile-xxx` 类型配置仅淘汰设置了过期时间的数据,而 `allkeys-xxx` 则淘汰数据库中所有数据。若 Redis 主要作为缓存使用,可选择 `allkeys-xxx`。
数据淘汰时机发生在事件循环处理命令时。有多种淘汰策略可供选择,redhat源码安装mysql从简单到复杂包括:不淘汰数据(`noeviction`)、随机淘汰(`volatile-random`、`allkeys-random`)、采样淘汰(`allkeys-lru`、`volatile-lru`、`volatile-ttl`、`volatile-freq`)以及近似 LRU 和 LRU 策略(`volatile-lru` 和 `allkeys-lru`)。
`noeviction` 策略允许读操作但禁止大多数写命令,返回 `oomerr` 错误,仅允许执行少量写命令,如删除命令 `del`、`hdel` 和 `unlink`。
`volatile-random` 和 `allkeys-random` 机制相对直接,随机淘汰数据,策略相对暴力。
`allkeys-lru` 策略根据最近最少使用(LRU)算法淘汰数据,优先淘汰最久未使用的数据。
`volatile-lru` 结合了过期时间与 LRU 算法,优先淘汰那些最久未访问且即将过期的数据。
`volatile-ttl` 策略淘汰即将过期的数据,而 `volatile-freq` 则根据访问频率(LFU)淘汰数据,考虑数据的使用热度。
`volatile-lru` 和 `allkeys-lru` 策略通过采样来近似 LRU 算法,维护一个样本池来确定淘汰顺序,以提高淘汰策略的精确性。
总结而言,Redis 的数据淘汰策略旨在平衡内存使用与数据访问需求,通过灵活的配置实现高效的数据管理。策略的选择应基于具体应用场景的需求,如数据访问模式、性能目标等。
Redis7.0源码阅读:哈希表扩容、缩容以及rehash
当哈希值相同发生冲突时,Redis 使用链表法解决,将冲突的键值对通过链表连接,但随着数据量增加,冲突加剧,查找效率降低。负载因子衡量冲突程度,负载因子越大,冲突越严重。为优化性能,Redis 需适时扩容,将新增键值对放入新哈希桶,减少冲突。
扩容发生在 setCommand 部分,传奇易语言源码其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。
扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。
哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。
rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,减少冲突。dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。
在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,实现 rehash 结果的整合。
综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。
用 Redis 搞定游戏中的实时排行榜,附源码!
本文将深入探讨如何利用 Redis 实现游戏中的实时排行榜,并提供实现细节和源码。
首先,我们以一个坦克手游为例。游戏中每个角色可拥有多种类型的坦克,玩家可以加入军团(公会)。这个系统需要实现两种主要的排行榜:等级排行榜和通天塔排行榜。
等级排行榜的实现思路是将等级和战斗力合并为一个复合积分。我们可以设定一个公式:分数 = 等级* + 战力。因为玩家等级范围从1到,战斗力范围从0到,所以我们设计时考虑到,等级需要3位数,战斗力需要位数,合计需要位数的积分,而Redis的有序集合(SortedSet)的score取值范围是位整数或双精度浮点数,足以容纳这个需求。
对于通天塔排行榜,我们采用类似但略有不同的策略。要求相同层数下,通关时间越早越排在前。我们可以将通关时间转换为相对于一个较远时间点(如--)的相对时间,计算公式为:分数 = 层数 * ^N + (基准时间 - 通关时间)。这里我们选择一个远到足以避免现实时间影响的时间戳,从而确保排名的公正性。
为了实现实时更新排行榜数据,我们采用一个策略:使用 Redis 的有序集合存储玩家的复合积分(如角色uid和坦克id),而使用哈希存储动态数据(如玩家的其他相关信息)。当玩家等级或战斗力发生改变时,实时更新有序集合中的积分值即可。对于其他可能变化的数据,也相应地更新哈希表中的数据。
在取排行榜时,以等级排行榜为例,我们可以使用 Redis 的命令来获取数据。具体的代码实现通常涉及多步骤操作,例如准备数据、排序、分批取数据等。优化点在于合理使用 Redis 的 Pipeline 和 Multi 模式,以提高性能和效率。
最终,排行榜的实现并不止于此,我们需要考虑的细节还包括对排行榜数据的展示、排序算法的优化等。这里提供了一个基本框架和实现思路,具体的代码和详细步骤需要根据实际项目需求和环境进行调整。
通过以上内容,我们已经对如何利用 Redis 来搭建游戏排行榜系统有了深入的理解。通过合理的数据结构设计和 Redis 命令的运用,可以实现高效、实时且易于维护的排行榜功能。
redis源码阅读--跳表解析
跳表是 Redis 中实现 zset 和 set 功能的关键数据结构。通过在链表基础上构建多级索引,跳表有效提升了查找效率,且其实现相较于红黑树更为简洁,无需大量精力来维持树的平衡。跳表节点具有顺序排列的特性,支持范围查询。
跳表的构成包括头结点、尾节点、长度以及索引层数。每一个节点包含数据 robj、分数 score 用于排序、上一节点指针 prev 用于反向遍历,以及多层索引信息 levels。各层索引 skiplistlevel 包括该层索引中节点指向的下一个节点指针 next 和间隔 span。节点的索引层数通过随机数生成,设计思路为使用第 n 级索引是使用第 n-1 级索引概率的 1/4,最多使用 级索引。使用如此设计可确保即便用到最高层级,所持数据量也足够大,无需担心索引不足。
跳表按照 score 和 robj 的大小进行排序,因此节点有序,支持范围查找。插入节点时,首先找到新节点可以插入的位置,即比新节点小的最大节点。此过程从最高层索引开始,使用 update 数组记录各层索引中节点的前一节点位置,以及 rank 数组记录 update 节点到 header 的间隔 span。新节点插入后,更新 prev 指针、tail 指针、跳表长度等信息。
删除节点同样遵循类似的逻辑,先查找节点的前一个节点,然后删除目标节点。在删除过程中,需要检查节点的下一节点是否为待删除数据,并调整节点连接和更新跳表的 level 值。当某层索引中节点的 next 指针变为 nil 时,该层索引已无用,可将 level 减一。最后,更新跳表长度。
虽然跳表概念看似复杂,但通过理解其多级索引机制,其余操作如范围查询、排名查询等将变得相对简单。在实际应用中,可通过阅读 Redis 源码中的 t_zset.c 和 redis.h 文件,了解跳表的具体实现。然而,更难的是将这些抽象概念转化为清晰、易于理解的文档,绘制图表对于深入理解跳表的逻辑非常有帮助。
Redis源码从哪里读起?
如果你正寻求理解Redis源码的路径,本文为你提供了一个全面的指南。Redis 是使用 C 语言构建的,因此,我们从 main 函数开始,深入探索其核心逻辑。在阅读过程中,我们应聚焦于从外部命令输入到内部执行流程的路径,逐步理解 Redis 的工作原理。
理解事件机制对于深入 Redis 的核心至关重要。通过 Redis 的事件循环,我们可以实现单线程环境下的高效处理多任务的能力。这一机制允许 Redis 以线程安全的方式处理大量请求,同时在执行后台任务时保持响应速度。事件循环与系统提供的异步 I/O 多路复用机制相结合,确保了 CPU 资源的高效利用,避免了并发执行的复杂性。
在讨论事件循环时,我们重点关注了两个阶段:初始化和事件处理。初始化阶段涉及配置和数据加载,而事件处理阶段则负责响应客户端请求、执行命令以及周期性任务的调度。通过事件循环,Redis 实现了在单一线程下处理多个请求的高效运行模式。
理解 Redis 命令请求的处理流程是整个指南的关键部分。当客户端向 Redis 发送命令时,流程分为两个阶段:连接建立和命令执行与响应。连接建立阶段由事件循环触发,而命令执行与响应阶段则涉及读取客户端发送的数据,执行命令并返回结果。这一过程通过特定的回调函数实现,确保了命令处理的高效和线程安全。
此外,我们还讨论了 Redis 的事件机制,即事件驱动程序库 ae.c,它在不同操作系统上支持多种 I/O 多路复用机制。在选择底层机制时,Redis 优先考虑后三种更现代、高效的方案,例如 macOS 上的 kqueue 和 Linux 上的 epoll。理解这些机制对于实现高性能网络服务至关重要。
为了帮助读者在阅读 Redis 源码时构建清晰的思维路径,我们提供了一个树型图展示关键函数之间的调用关系。这张图基于 Redis 源码的 5.0 分支,详细地展示了初始化、事件处理、命令请求处理等关键流程的调用顺序。
最后,本文提供的参考文献旨在为读者提供进一步学习的资源。对于希望深入理解 Redis 源码并学习 C 语言编程经验的读者,这些资源将起到重要作用。总的来说,本文旨在为那些希望从源头上理解 Redis 工作机制的技术爱好者提供一个全面、系统化的指南。
在语音聊天室APP源码开发中,使用Redis实现关注好友功能
在语音聊天室APP源码开发中,为了优化社交体验,实现关注好友功能成为关键。单纯通过数据库获取关注列表容易实现,但当需查询多个用户共同关注的人或共同粉丝时,效率低下。利用Redis可简化这一过程,其自带集合操作如交集、并集、差集,使处理变得高效。
设计思路采用Redis中的zset,利用其排序与去重功能。每个用户存储两个集合,分别用于保存关注的用户和被关注的用户。主要使用命令:zadd用于添加成员,zrem移除成员,zcard统计成员数量,zrange查询指定区间成员(并可选返回成员与分数),zrevrange与zrange操作相反,zrank获取成员排名。zinterstore用于计算交集,聚合方式可选。
以Java为例,实现过程分为三步:
1. 添加语音聊天室APP源码Redis客户端。
2. 封装简单的Redis工具类。
3. 封装关注类(Follow类),整合上述功能。
总结:通过Redis实现的语音聊天室APP源码关注好友功能,不仅简化了复杂操作,还提高了处理效率,为用户提供了更流畅的社交体验。本文转载自网络,旨在分享知识,如有侵权请告知云豹科技删除。
redis源码学习-quicklist篇
Redis源码中的quicklist是ziplist优化版的双端链表,旨在提高内存效率和操作效率。ziplist虽然内存使用率高,但查找和增删操作的最坏时间复杂度可能达到O(n^2),这与Redis高效数据处理的要求不符。quicklist通过每个节点独立的ziplist结构,降低了更新复杂度,同时保持了内存使用率。
quicklist的基本结构包括:头节点(head)、尾节点(tail)、entry总数(count)、节点总数(len)、容量指示(fill)、压缩深度(compress)、以及用于内存管理的bookmarks。节点结构包括双向链表的prev和next,ziplist的引用zl,ziplist的字节数sz、item数count、以及ziplist类型(raw或lzf压缩)和尝试压缩标志(attempted_compress)。
核心操作函数如create用于初始化节点,insert则根据需求执行头插法或尾插法。delete则简单地从链表中移除节点,释放相关内存。quicklist的优化重点在于ziplist,理解了ziplist的工作原理,quicklist的数据结构理解就相对容易了。