皮皮网
皮皮网

【python 字典源码】【asp源码 框架】【心邮源码】db源码

来源:虚拟网站平台源码 发表时间:2025-01-24 14:06:28

1.LevelDB 源码剖析1 -- 原理
2.深入源码解析LevelDB
3.FREE SOLO - 自己动手实现Raft - 16 - leveldb源码分析与调试-2
4.FREE SOLO - 自己动手实现Raft - 17 - leveldb源码分析与调试-3
5.RocksDb 源码剖析 (1) | 如何混合 new 、源码mmap 设计高效内存分配器 arena ?源码

db源码

LevelDB 源码剖析1 -- 原理

       LSM-Tree,全称Log-Structured Merge Tree,源码被广泛应用于数据库系统中,源码如HBase、源码Cassandra、源码python 字典源码LevelDB和SQLite,源码甚至MongoDB 3.0也引入了可选的源码LSM-Tree引擎。这种数据结构旨在提供优于传统B+树或ISAM(Indexed Sequential Access Method)方法的源码写入吞吐量,通过避免随机的源码本地更新操作实现。

       LSM-Tree的源码核心思想基于磁盘性能的特性:随机访问速度远低于顺序访问,三个数量级的源码差距。因此,源码简单地将数据附加至文件尾部(日志或堆文件策略)可以提供接近理论极限的源码写入吞吐量。尽管这种方法足够简单且性能良好,源码但它有一个明显的缺点:从日志中随机读取数据需要花费更多时间,因为需要按时间顺序从近及远扫描日志直至找到所需键。因此,日志策略仅适用于简单的数据访问场景。

       为了应对更复杂的读取需求,如基于键的搜索、范围搜索等,LSM-Tree引入了一种改进策略,通过创建一系列排序文件来存储数据,每次写入都会生成一个新的文件,同时保留了日志系统优秀的写性能。在读取数据时,asp源码 框架系统会检查所有文件,并定期合并文件以减少文件数量,从而提高读取性能。

       在LSM-Tree的基本算法中,写入数据按照顺序保存到一组较小的排序文件中。每个文件代表了一段时间内的数据变更,且在写入前进行排序。内存表作为写入数据的缓冲区,用于保持键值的顺序。当内存表填满后,已排序的数据刷新到磁盘上的新文件。系统会周期性地执行合并操作,选择一些文件进行合并,以减少文件数量和删除冗余数据,同时维持读取性能。

       读取数据时,系统首先检查内存缓冲区,若未找到目标键,则以反向时间顺序检查各个文件,直到找到目标键。合并操作通过定期将文件合并在一起,控制文件数量和读取性能,即使文件数量增加,读取性能仍可保持在可接受范围内。通过使用内存中保存的页索引,可以优化读取操作,心邮源码尤其是在文件末尾保留索引块,这通常比直接二进制搜索更高效。

       为了减少读取操作时访问的文件数量,新实现采用了分级合并(Leveled Compaction),即基于级别的文件合并策略。这不仅减少了最坏情况下需要访问的文件数量,还减少了单次压缩的副作用,同时提供更好的读取性能。分级合并与基本合并的主要区别在于文件合并的策略,这使得工作负载扩展合并的影响更高效,同时减少总空间需求。

深入源码解析LevelDB

       深入源码解析LevelDB

       LevelDB总体架构中,sstable文件的生成过程遵循一系列精心设计的步骤。首先,遍历immutable memtable中的key-value对,这些对被写入data_block,每当data_block达到特定大小,构造一个额外的key-value对并写入index_block。在这里,key为data_block的最大key,value为该data_block在sstable中的偏移量和大小。同时,构造filter_block,默认使用bloom filter,用于判断查找的key是否存在于data_block中,显著提升读取性能。微100 源码meta_index_block随后生成,存储所有filter_block在sstable中的偏移和大小,此策略允许在将来支持生成多个filter_block,进一步提升读取性能。meta_index_block和index_block的偏移和大小保存在sstable的脚注footer中。

       sstable中的block结构遵循一致的模式,包括data_block、index_block和meta_index_block。为提高空间效率,数据按照key的字典顺序存储,采用前缀压缩方法处理。查找某一key时,必须从第一个key开始遍历才能恢复,因此每间隔一定数量(block_restart_interval)的key-value,全量存储一个key,并设置一个restart point。每个block被划分为多个相邻的key-value组成的集合,进行前缀压缩,并在数据区后存储起始位置的偏移。每一个restart都指向一个前缀压缩集合的起始点的偏移位置。最后一个位存储restart数组的大小,表示该block中包含多少个前缀压缩集合。

       filter_block在写入data_block时同步存储,当一个new data_block完成,根据data_block偏移生成一份bit位图存入filter_block,并清空key集合,无敌 指标源码重新开始存储下一份key集合。

       写入流程涉及日志记录,包括db的sequence number、本次记录中的操作个数及操作的key-value键值对。WriteBatch的batch_data包含多个键值对,leveldb支持延迟写和停止写策略,导致写队列可能堆积多个WriteBatch。为了优化性能,写入时会合并多个WriteBatch的batch_data。日志文件只记录写入memtable中的key-value,每次申请新memtable时也生成新日志文件。

       在写入日志时,对日志文件进行划分为多个K的文件块,每次读写以这样的每K为单位。每次写入的日志记录可能占用1个或多个文件块,因此日志记录块分为Full、First、Middle、Last四种类型,读取时需要拼接。

       读取流程从sstable的层级结构开始,0层文件特别,可能存在key重合,因此需要遍历与查找key有重叠的所有文件,文件编号大的优先查找,因为存储最新数据。非0层文件,一层中的文件之间key不重合,利用版本信息中的元数据进行二分搜索快速定位,仅需查找一个sstable文件。

       LevelDB的sstable文件生成与合并管理版本,通过读取log文件恢复memtable,仅读取文件编号大于等于min_log的日志文件,然后从日志文件中读取key-value键值对。

       LevelDB的LruCache机制分为table cache和block cache,底层实现为个shard的LruCache。table cache缓存sstable的索引数据,类似于文件系统对inode的缓存;block cache缓存block数据,类似于Linux中的page cache。table cache默认大小为,实际缓存的是个sstable文件的索引信息。block cache默认缓存8M字节的block数据。LruCache底层实现包含两个双向链表和一个哈希表,用于管理缓存数据。

       深入了解LevelDB的源码解析,有助于优化数据库性能和理解其高效数据存储机制。

FREE SOLO - 自己动手实现Raft - - leveldb源码分析与调试-2

       继续探讨leveldb的内部操作,首先解析写入过程。write-batch和leveldb key是核心数据结构,它们在数据写入中的角色至关重要。

       1. 数据写入流程:当通过DBImpl::Put或DB::Put添加键值对时,数据会被封装成write-batch。这个batch随后交给DBImpl::Write,最终由log::Writer::AddRecord负责将数据写入log。这样,数据便有了持久化的记录。

       2. 写入memtable:写入log后,数据还会被添加到memtable,便于快速查询。同样,DBImpl::Write通过MemTableInserter::Put调用MemTable::Add,将数据写入memtable,形成内存中的临时存储。

       3. 数据读取:对于查询,DBImpl::Get是起点,通过MemTable::Get调用SkipList::FindGreaterOrEqual在SortedTable的SkipList中搜索,提供即时的数据访问。

       总结:通过上述调用栈,我们可以对leveldb的写入和读取有更深入的理解。在后续的内容中,我们将关注大量数据写入对内存和磁盘影响的详细分析。

       期待在下次与您分享更多内容,再见!

       联系信息:email: castermode@gmail.com | 网站:vectordb.io | 项目未指定

FREE SOLO - 自己动手实现Raft - - leveldb源码分析与调试-3

       leveldb的数据流动路径是单向的,从内存中的memtable流向不可变的memtable,最终写入到磁盘上的sorted table文件中。以下是几个关键状态的分析,来了解内存和磁盘上数据的分布。

       以下是分析所涉及的状态:

       1. 数据全在内存中

       随机写入条数据,观察到数据全部存储在memtable中,此时还没有进行compaction操作。

       2. 数据全在磁盘中

       写入大量数据,并等待数据完全落盘后重启leveldb。此时,数据全部存储在磁盘中,分布在不同的level中。在每个level的sstable文件中,可以看到key的最大值与最小值。

       3. 数据部分在内存中,部分在磁盘中

       随机写入条数据,发现内存中的memtable已满,触发compaction操作,数据开始写入到sstable文件。同时,继续写入的数据由于还未达到memtable上限,仍然保存在内存中。

       4. 总结

       通过观察不同数据写入量导致的数据在内存与磁盘间的流动,我们可以看到leveldb内部状态的转换。

       下篇文章将分析LRUCache数据状态的变化。敬请期待!

RocksDb 源码剖析 (1) | 如何混合 new 、mmap 设计高效内存分配器 arena ?

       本文旨在深入剖析RocksDb源码,从内存分配器角度着手。RocksDb内包含MemoryAllocator和Allocator两大类内存分配器。MemoryAllocator作为基类,提供MemkindKmemAllocator和JemallocNodumpAllocator两个子类,分别集成memkind和jemalloc库的功能,实现内存分配与释放。

       接着,重点解析Allocator类及其子类Arena的实现。基类Allocator提供两个关键接口:内存分配与对齐。Arena类采用block为单位进行内存分配,先分配一个block大小的内存,后续满足需求时,优先从block中划取,以减少内存浪费。一个block的大小由kBlockSize参数决定。分配策略中,Arena通过两个指针(aligned_alloc_ptr_和unaligned_alloc_ptr_)分别管理对齐与非对齐内存,提高内存利用效率。

       分配内存时,Arena通过构造函数初始化成员变量,包括block大小、内存在栈上的分配与mmap机制的使用。构造函数内使用OptimizeBlockSize函数确保block大小合理,减少内存对齐浪费。Arena中的内存管理逻辑清晰,尤其在分配新block时,仅使用new操作,无需额外内存对齐处理。

       分配内存流程中,AllocateNewBlock函数直接调用new分配内存,而AllocateFromHugePage和AllocateFallback函数则涉及mmap机制的使用与内存分配策略的统一。这些函数共同构成了Arena内存管理的核心逻辑,实现了灵活高效地内存分配。

       此外,Arena还提供AllocateAligned函数,针对特定对齐需求分配内存。这一函数在使用mmap分配内存时,允许用户自定义对齐大小,优化内存使用效率。在处理对齐逻辑时,Arena巧妙地利用位运算优化计算过程,提高了代码效率。

       总结而言,RocksDb的内存管理机制通过Arena类实现了高效、灵活的内存分配与管理。通过深入解析其源码,可以深入了解内存对齐、内存分配与多线程安全性的实现细节,为开发者提供宝贵的内存管理实践指导。未来,将深入探讨多线程内存分配器的设计,敬请期待后续更新。

相关栏目:焦点