本站提倡有节制游戏,合理安排游戏时间,注意劳逸结合。

【jepaas源码】【日历记事网站源码】【微现场系统源码】torch源码

2024-11-18 22:37:39 来源:知识 分类:知识

1.PyTorch 源码分析(一):torch.nn.Module
2.PyTorch 源码分析(三):torch.nn.Norm类算子
3.PyTorch 源码解读之 torch.utils.data:解析数据处理全流程
4.PyTorch中torch.nn.Transformer的源码解读(自顶向下视角)
5.PyTorch源码学习系列 - 2. Tensor
6.Pytorch nn.Module接口及源码分析

torch源码

PyTorch 源码分析(一):torch.nn.Module

       nn.Module是PyTorch中最核心和基础的结构,它是操作符/损失函数的基类,同时也是组成各种网络结构的基类(实际上是由多个module组合而成的一个module)。

       在Python侧,2.1回调函数注册,2.2 module类定义中,jepaas源码有以下几个重点函数:

       重点函数一:将模型的参数移动到CUDA上,内部会遍历其子module。

       重点函数二:将模型的参数移动到CPU上,内部会遍历其子module。

       重点函数三:将模型的参数转化为fp或者fp等,内部会遍历其子module。

       重点函数四:forward函数调用。

       重点函数五:返回该net的所有layer。

       在类图中,PyTorch的算子都是module的子类,包括自定义算子和整网定义。

       在C++侧,3.1 module.to("cuda")详细分析中,本质是将module的parameter&buffer等tensor移动到CUDA上,最终调用的是tensor.to(cuda)。

       3.2 module.load/save逻辑中,PyTorch模型保存分为两种,一种是纯参数,一种是带模型结构(PyTorch中的模型结构,本质上是由module、sub-module构造的一个计算图)。

       parameter、buffer是通过key-value的形式来存储和检索的,key为module的.name,value为存储具体数据的tensor。

       InputArchive/OutputArchive的write和read逻辑。

       通过Module,PyTorch将op/loss/opt等串联起来,类似于一个计算图。基于PyTorch构建的ResNet等模型,是逐个算子进行计算的,tensor在CPU和GPU之间来回流动,而不是整个计算都在GPU上完成(即中间计算结果不出GPU)。实际上,在进行推理时,可以构建一个计算图,日历记事网站源码让整个计算图的计算都在GPU上完成,不知道是否可行(如果GPU上有一个CPU就可以完成这个操作,不知道tensorrt是否是这样的操作)。

PyTorch 源码分析(三):torch.nn.Norm类算子

       PyTorch源码详解(三):torch.nn.Norm类算子深入解析

       Norm类算子在PyTorch中扮演着关键角色,它们包括BN(BatchNorm)、LayerNorm和InstanceNorm。

       1. BN/LayerNorm/InstanceNorm详解

       BatchNorm(BN)的核心功能是对每个通道(C通道)的数据进行标准化,确保数据在每个批次后保持一致的尺度。它通过学习得到的gamma和beta参数进行缩放和平移,保持输入和输出形状一致,同时让数据分布更加稳定。

       gamma和beta作为动态调整权重的参数,它们在BN的学习过程中起到至关重要的作用。

       2. Norm算子源码分析

       继承关系:Norm类在PyTorch中具有清晰的继承结构,子类如BatchNorm和InstanceNorm分别继承了其特有的功能。

       BN与InstanceNorm实现:在Python代码中,BatchNorm和InstanceNorm的实例化和计算逻辑都包含对输入数据的2D转换,即将其分割为M*N的矩阵。

       计算过程:在计算过程中,首先计算每个通道的均值和方差,这是这些标准化方法的基础步骤。

       C++侧的源码洞察

       C++实现中,对于BatchNorm和LayerNorm,代码着重于处理数据的标准化操作,同时确保线程安全,通过高效的数据视图和线程视图处理来提高性能。

PyTorch 源码解读之 torch.utils.data:解析数据处理全流程

       文@

       目录

       0 前言

       1 Dataset

       1.1 Map-style dataset

       1.2 Iterable-style dataset

       1.3 其他 dataset

       2 Sampler

       3 DataLoader

       3.1 三者关系 (Dataset, Sampler, Dataloader)

       3.2 批处理

       3.2.1 自动批处理(默认)

       3.2.2 关闭自动批处理

       3.2.3 collate_fn

       3.3 多进程处理 (multi-process)

       4 单进程

       5 多进程

       6 锁页内存 (Memory Pinning)

       7 预取 (prefetch)

       8 代码讲解

       0 前言

       本文以 PyTorch 1.7 版本为例,解析 torch.utils.data 模块在数据处理流程中的应用。

       理解 Python 中的迭代器是解读 PyTorch 数据处理逻辑的关键。Dataset、Sampler 和 DataLoader 三者共同构建数据处理流程。

       迭代器通过实现 __iter__() 和 __next__() 方法,支持数据的循环访问。Dataset 提供数据获取接口,Sampler 控制遍历顺序,DataLoader 负责加载和批处理数据。

       1 Dataset

       Dataset 包括 Map-style 和 Iterable-style 两种,分别用于索引访问和迭代访问数据。

       Map-style dataset 通过实现 __getitem__() 和 __len__() 方法,支持通过索引获取数据。

       Iterable-style dataset 实现 __iter__() 方法,微现场系统源码适用于随机访问且批次大小依赖于获取数据的场景。

       2 Sampler

       Sampler 用于定义数据遍历的顺序,支持用户自定义和 PyTorch 提供的内置实现。

       3 DataLoader

       DataLoader 是数据加载的核心,支持 Map-style 和 Iterable-style Dataset,提供单多进程处理和批处理等功能。

       通过参数配置,如 batch_size、drop_last、collate_fn 等,DataLoader 实现了数据的自动和手动批处理。

       4 批处理

       3.2.1 自动批处理(默认)

       DataLoader 默认使用自动批处理,通过参数控制批次生成和样本整理。

       3.2.2 关闭自动批处理

       关闭自动批处理,允许用户自定义批处理逻辑或处理单个样本。

       3.2.3 collate_fn

       collate_fn 是手动批处理时的关键,用于整理单个样本为批次。

       5 多进程

       多进程处理通过 num_workers 参数启用,加速数据加载。

       6 单进程

       单进程模式下,数据加载可能影响计算流程,适用于数据量小且无需多进程的场景。

       7 锁页内存 (Memory Pinning)

       Memory Pinning 技术确保数据在 GPU 加速过程中快速传输,提高性能。

       8 代码讲解

       通过具体代码分析,展示了 DataLoader 的初始化、迭代和数据获取过程,涉及迭代器、Sampler 和 Dataset 的交互。

PyTorch中torch.nn.Transformer的源码解读(自顶向下视角)

       torch.nn.Transformer是PyTorch中实现Transformer模型的类,其设计基于论文"Attention is All You Need"。本文尝试从官方文档和代码示例入手,解析torch.nn.Transformer源码。

       在官方文档中,对于torch.nn.Transformer的介绍相对简略,欲深入了解每个参数(特别是各种mask参数)的用法,建议参考基于torch.nn.Transformer实现的seq2seq任务的vanilla-transformer项目。

       Transformer类实现了模型架构的核心部分,包括初始化和forward函数。初始化时,主要初始化encoder和decoder,云龙牌机源码其中encoder通过重复堆叠TransformerEncoderLayer实现,decoder初始化类似。forward函数依次调用encoder和decoder,encoder的输出作为decoder的输入。

       TransformerEncoder初始化包括设置encoder_layer和num_layers,用于创建重复的encoder层。forward函数则调用这些层进行数据处理,输出编码后的结果。

       TransformerEncoderLayer实现了论文中红框部分的结构,包含SelfAttention和FeedForward层。初始化时,主要设置层的参数,forward函数调用这些层进行数据处理。

       在实现细节中,可以进一步探索MultiheadAttention的实现,包括初始化和forward函数。初始化涉及QKV的投影矩阵,forward函数调用F.multi_head_attention_forward进行数据处理。

       F.multi_head_attention_forward分为三部分:in-projection、scaled_dot_product_attention和拼接变换。in-projection进行线性变换,scaled_dot_product_attention计算注意力权重,拼接变换则将处理后的结果整合。

       TransformerDecoder和TransformerDecoderLayer的实现与TransformerEncoder相似,但多了一个mha_block,用于处理多头注意力。

       总结,torch.nn.Transformer遵循论文设计,代码量适中,结构清晰,便于快速理解Transformer模型架构。通过自顶向下的解析,可以深入理解其内部实现。

PyTorch源码学习系列 - 2. Tensor

       本系列文章同步发布于微信公众号小飞怪兽屋及知乎专栏PyTorch源码学习-知乎(zhihu.com),欢迎关注。

       若问初学者接触PyTorch应从何学起,答案非神经网络(NN)或自动求导系统(Autograd)莫属,而是看似平凡却无所不在的张量(Tensor)。正如编程初学者在控制台输出“Hello World”一样,Tensor是PyTorch的“Hello World”,每个初学者接触PyTorch时,查看jdk的源码都通过torch.tensor函数创建自己的Tensor。

       编写上述代码时,我们已步入PyTorch的宏观世界,利用其函数创建Tensor对象。然而,Tensor是如何创建、存储、设计的?今天,让我们深入探究Tensor的微观世界。

       Tensor是什么?从数学角度看,Tensor本质上是多维向量。在数学里,数称为标量,一维数据称为向量,二维数据称为矩阵,三维及以上数据统称为张量。维度是衡量事物的方式,例如时间是一种维度,销售额相对于时间的关系可视为一维Tensor。Tensor用于表示多维数据,在不同场景下具有不同的物理含义。

       如何存储Tensor?在计算机中,程序代码、数据和生成数据都需要加载到内存。存储Tensor的物理媒介是内存(GPU上是显存),内存是一块可供寻址的存储单元。设计Tensor存储方案时,需要先了解其特性,如数组。创建数组时,会向内存申请一块指定大小的连续存储空间,这正是PyTorch中Strided Tensor的存储方式。

       PyTorch引入了步伐(Stride)的概念,表示逻辑索引的相对距离。例如,一个二维矩阵的Stride是一个大小为2的一维向量。Stride用于快速计算元素的物理地址,类似于C/C++中的多级指针寻址方式。Tensor支持Python切片操作,因此PyTorch引入视图概念,使所有Tensor视图共享同一内存空间,提高程序运行效率并减少内存空间浪费。

       PyTorch将Tensor的物理存储抽象成一个Storage类,与逻辑表示类Tensor解耦,建立Tensor视图和物理存储Storage之间多对一的联系。Storage是声明类,具体实现在实现类StorageImpl中。StorageImp有两个核心成员:Storage和StorageImpl。

       PyTorch的Tensor不仅用Storage类管理物理存储,还在Tensor中定义了很多相关元信息,如size、stride和dtype,这些信息都存在TensorImpl类中的sizes_and_strides_和data_type_中。key_set_保存PyTorch对Tensor的layout、device和dtype相关的调度信息。

       PyTorch创建了一个TensorBody.h的模板文件,在该文件中创建了一个继承基类TensorBase的类Tensor。TensorBase基类封装了所有与Tensor存储相关的细节。在类Tensor中,PyTorch使用代码自动生成工具将aten/src/ATen/native/native_functions.yaml中声明的函数替换此处的宏${ tensor_method_declarations}

       Python中的Tensor继承于基类_TensorBase,该类是用Python C API绑定的一个C++类。THPVariable_initModule函数除了声明一个_TensorBase Python类之外,还通过torch::autograd::initTorchFunctions(module)函数声明Python Tensor相关的函数。

       torch.Tensor会调用C++的THPVariable_tensor函数,该函数在文件torch/csrc/autograd/python_torch_functions_manual.cpp中。在经过一系列参数检测之后,在函数结束之前调用了torch::utils::tensor_ctor函数。

       torch::utils::tensor_ctor在文件torch/csrc/utils/tensor_new.cpp中,该文件包含了创建Tensor的一些工具函数。在该函数中调用了internal_new_from_data函数创建Tensor。

       recursive_store函数的核心在于

       Tensor创建后,我们需要通过函数或方法对其进行操作。Tensor的方法主要通过torch::autograd::variable_methods和extra_methods两个对象初始化。Tensor的函数则是通过initTorchFunctions初始化,调用gatherTorchFunctions来初始化函数,主要分为两种函数:内置函数和自定义函数。

Pytorch nn.Module接口及源码分析

       本文旨在介绍并解析Pytorch中的torch.nn.Module模块,它是构建和记录神经网络模型的基础。通过理解和掌握torch.nn.Module的作用、常用API及其使用方法,开发者能够构建更高效、灵活的神经网络架构。

       torch.nn.Module主要作用在于提供一个基类,用于创建神经网络中的所有模块。它支持模块的树状结构构建,允许开发者在其中嵌套其他模块。通过继承torch.nn.Module,开发者可以自定义功能模块,如卷积层、池化层等,这些模块的前向行为在`forward()`方法中定义。例如:

       python

       import torch.nn as nn

       class SimpleModel(nn.Module):

        def __init__(self):

        super(SimpleModel, self).__init__()

        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3)

        self.conv2 = nn.Conv2d(in_channels=6, out_channels=, kernel_size=3)

        def forward(self, x):

        x = self.conv1(x)

        x = self.conv2(x)

        return x

       torch.nn.Module还提供了多种API,包括类变量、重要概念(如parameters和buffer)、数据类型和设备类型转换、hooks等。这些API使开发者能够灵活地控制和操作模型的状态。

       例如,可以通过requires_grad_()方法设置模块参数的梯度追踪,这对于训练过程至关重要。使用zero_grad()方法清空梯度,有助于在反向传播后初始化梯度。`state_dict()`方法用于获取模型状态字典,常用于模型的保存和加载。

       此外,_apply()方法用于执行自定义操作,如类型转换或设备迁移。通过__setattr__()方法,开发者可以方便地修改模块的参数、缓存和其他属性。

       总结而言,torch.nn.Module是Pytorch中构建神经网络模型的核心组件,它提供了丰富的API和功能,支持开发者创建复杂、高效的神经网络架构。通过深入理解这些API和方法,开发者能够更高效地实现各种深度学习任务。

torchvision应用与源码分析

       torchvision是PyTorch库中的一部分,用于计算机视觉任务,它包含了一系列的预训练模型和数据集。

       一:torchvision应用

       在计算机视觉领域,torchvision提供了方便的API,用于加载和处理图像数据,训练模型和进行预测。它通常与PyTorch深度学习框架结合使用,为用户提供了一个完整的框架来开发和部署计算机视觉应用。

       二:torchvision源码分析

       1. setup.py分析

       setup.py是Python包的配置文件,用于描述包的元数据和安装步骤。在torchvision中,setup.py文件被用来编译和安装包的依赖库。

       1.1 导入依赖的模块

       1.2 从配置文件中获取当前torchvision的版本信息

       1.3 获取依赖的torch版本信息

       1.4 获取编译扩展信息,然后传递给setup函数,启动编译

       1.5 重点:get_extensions分析

       在torchvision的setup.py文件中,get_extensions函数是核心部分,它负责编译torchvision自身的源码以及一些第三方库,如jpeg和codec等。

       1.5.1 获取ccsrc下面的cpp源码

       1.5.2 获取环境变量中配置的编译选项

       1.5.3 判断是AMD的HIP还是nVidia的CUDA,来获取到最终的cuda文件

       1.5.4:依据环境上是否支持cuda来确定编译扩展

       1.5.5 添加扩展

       至此,torchvision就将整个版本包编译出来了,会调用torch的cpp和cuda编译扩展(即:通过gcc+nvcc来编译ccsrc下面的源码,而不用torchvision自行再来设置各种编译环境信息了)。

       整个编译核心流程总结如下:

       2. torchvision新增算子流程

       以torchvision.ops.DeformConv2d为例

       2.1 基础用法与模型结构

       通过Netron工具打开模型结构,可以看到torchvision的deform_conv2d是单独的IR定义的算子

       2.2 python侧实现分析

       deform_conv2d定义在Python侧,实际上做了参数初始化后,将转交给了C++侧对应的接口

       2.3 C++侧分析:torch.ops.torchvision.deform_conv2d

       2.3.1 接口定义

       2.3.2 接口实现

       关键在于这两个接口的注册

       算子的具体实现和如何向pytorch完成注册呢?

       该算子有C++和CUDA实现方式,C++方式可以在纯CPU版本中运行,cuda实现则依赖于GPU和CUDA

       2.3.2.1 C++实现

       2.3.2.2 CUDA实现

       这种方式实现的算子,trace出来的模型中,为单个算子

       总结:自定义算子向torch集成分为两步

       三:基于torchvision新增一个算子

       实现一个算子:my_add = 2*x + y

       3.1 环境准备

PyTorch 源码解读之 torch.optim:优化算法接口详解

       本文深入解读了 PyTorch 中的优化算法接口 torch.optim,主要包括优化器 Optimizer、学习率调整策略 LRScheduler 及 SWA 相关优化策略。以下为详细内容:

       Optimizer 是所有优化器的基类,提供了初始化、更新参数、设置初始学习率等基本方法。在初始化优化器时,需要传入模型的可学习参数和超参数。Optimizer 的核心方法包括:

       1. 初始化函数:创建优化器时,需指定模型的可学习参数和超参数,如学习率、动量等。

       2. add_param_group:允许为模型的不同可学习参数组设置不同的超参数,以适应不同的学习需求。

       3. step:执行一次模型参数更新,需要闭包提供损失函数的梯度信息。

       4. zero_grad:在更新参数前,清空参数的梯度信息。

       5. state_dict 和 load_state_dict:用于序列化和反序列化优化器的状态,便于保存和加载模型的训练状态。

       Optimizer 包括常见的优化器如 SGD、Adagrad、RMSprop 和 Adam,各有特点,适用于不同的应用场景。例如,SGD 适用于简单场景,而 Adam 则在处理大数据集时表现更优。

       学习率调节器 lr_scheduler 则负责在训练过程中调整学习率,以适应模型的收敛过程。PyTorch 提供了多种学习率调整策略,如 StepLR、MultiStepLR、ExponentialLR 等,每种策略都有其特点和应用场景,如 StepLR 用于周期性调整学习率,以加速收敛。

       SWA(随机权重平均)是一种优化算法,通过在训练过程中计算模型参数的平均值,可以得到更稳定的模型,提高泛化性能。SWA 涉及 AveragedModel 类,用于更新模型的平均参数,以及 update_bn 函数,用于在训练过程中更新批量归一化参数。

       总结,torch.optim 提供了丰富的优化算法接口,可以根据模型训练的需求灵活选择和配置,以达到最佳的训练效果和泛化性能。通过深入理解这些优化器和学习率调整策略,开发者可以更有效地训练深度学习模型。

PyTorch源码学习 - ()模型的保存与加载

       在PyTorch源码中,模型的保存与加载是通过`torch.save`和`torch.load`两个核心函数实现的。`torch.save`负责将一个Python对象持久化到磁盘文件,而`torch.load`则用于从磁盘文件中恢复对象。

       在具体的实现中,`torch.save`会使用一系列辅助函数如`torch._opener`,`torch._open_zipfile_writer`,`torch._open_zipfile_writer_file`,`torch._open_zipfile_writer_buffer`等来操作文件和流。根据文件或内存缓冲区创建流容器,进行对象的保存。`torch._save`则进一步封装了文件的打开和写入过程,`torch._open_file_like`和`torch._open_file`用于管理文件句柄,`torch._open_buffer_writer`和`torch._open_buffer_reader`则封装了二进制流的读写。

       对于模型加载,`torch.load`函数通过`torch._open_zipfile_reader`和`torch._weights_only_unpickler`实现。`torch._weights_only_unpickler`是定制的反序列化器,限制了处理的数据类型,确保安全加载模型权重。`torch._get_restore_location`和`torch.default_restore_location`则用于获取和设置恢复位置,以支持在多设备或分布式环境下的模型加载。

       实现中,Python和C++的结合是关键,PyTorch使用`PyBind`实现C++和Python接口的绑定。`torch/_C/ __init__.pyi`用于定义Python中类型信息的模板,`torch/csrc/jit/python/init.cpp`则用于实现JIT(Just-In-Time)编译系统,将C++类对象绑定到Python环境,实现高效的动态编译。

       在PyTorch中,Python主要负责管理C++对象,核心工作包括管理C++对象的生命周期、调用C++方法,以及处理Python层面的逻辑和接口定义。通过这样的结合,PyTorch实现了高性能和易用性的统一,为深度学习模型的开发和应用提供了强大支持。

       整体来看,PyTorch的模型保存与加载机制通过精细的文件操作和对象管理,以及Python与C++的高效结合,确保了模型的高效持久化与灵活加载,为深度学习模型的开发与部署提供了坚实的底层支持。

相关推荐
一周热点