1.Linux驱动开发笔记(一):helloworld驱动源码编写、驱动驱动makefile编写以及驱动编译基本流程
2.OpenHarmony Camera源码分析
3.linux设备驱动程序——i2c设备驱动源码实现
4.Linux驱动(驱动程序开发、源码源码驱动框架代码编译和测试)
5.Linux USB 驱动开发实例(一)——USB摄像头驱动实现源码分析
6.深入select多路复用内核源码加驱动实现
Linux驱动开发笔记(一):helloworld驱动源码编写、分析分析方法makefile编写以及驱动编译基本流程
前言
基于linux的驱动驱动驱动开发学习笔记,本篇主要介绍了一个字符驱动的源码源码基础开发流程,适合有嵌入式开发经验的分析分析方法代理功能 影视源码读者学习驱动开发。
笔者自身情况
我具备硬件基础、驱动驱动单片机软硬基础和linux系统基础等,源码源码但缺乏linux驱动框架基础,分析分析方法也未进行过linux系统移植和驱动移植开发。驱动驱动因此,源码源码学习linux系统移植和驱动开发将有助于打通嵌入式整套流程。分析分析方法虽然作为技术leader不一定要亲自动手,驱动驱动但对产品构架中的源码源码每一块业务和技术要有基本了解。
推荐
建议参考xun为的分析分析方法视频教程,教程过程清晰,适合拥有丰富知识基础的资深研发人员学习。该教程不陷入固有思维误区,也不需要理解imx6的庞杂汇报,直接以实现目标为目的,无需从裸机开始开发学习,所有步骤都解释得清清楚楚。结合多年相关从业经验,确实能够融会贯通。从业多年,首次推荐,因为确实非常好。
驱动
驱动分为四个部分
第一个驱动源码:Hello world!
步骤一:包含头文件
包含宏定义的头文件init.h,包括初始化和宏头文件,如module_init、module_exit等。
#include
包含初始化加载模块的头文件
步骤二:写驱动文件的入口和出口
使用module_init()和module_exit()宏定义入口和出口。
module_init(); module_exit();
步骤三:声明开源信息
告诉内核,本模块驱动有开源许可证。
MODULE_LICENSE("GPL");
步骤四:实现基础功能
入口函数
static int hello_init(void) { printk("Hello, I’m hongPangZi\n"); return 0; }
出口函数
static void hello_exit(void) { printk("bye-bye!!!\n"); }
此时可以修改步骤二的入口出口宏
module_init(hello_init); module_exit(hello_exit);
总结,按照四步法,搭建了基础的驱动代码框架。
Linux驱动编译成模块
将驱动编译成模块,然后加载到内核中。赵云刚 源码资本将驱动直接编译到内核中,运行内核则会直接加载驱动。
步骤一:编写makefile
1 生成中间文件的名称
obj-m += helloworld.o
2 内核的路径
内核在哪,实际路径在哪
KDIR:=
3 当前路径
PWD?=$(shell pwd)
4 总的编译命令
all: make -C $(KDIR) M=$(PWD) modules
make进入KDIR路径,当前路径编译成模块。
obj-m = helloworld.o KDIR:= PWD?=$(shell pwd) all: make -C $(KDIR) M=$(PWD) modules
步骤二:编译驱动
编译驱动之前需要注意以下几点:
1 内核源码要编译通过
驱动编译成的目标系统需要与内核源码对应,且内核源码需要编译通过。
2 内核源码版本
开发板或系统运行的内核版本需要与编译内核驱动的内核源码版本一致。
3 编译目标环境
在内核目录下,确认是否为需要的构架:
make menu configure export ARCH=arm
修改构架后,使用menu configure查看标题栏的内核构架。
4 编译器版本
找到使用的arm编译器(实际为arm-linux-gnueabihf-gcc,取gcc前缀):
export CROSS_COMPILE=arm-linux-gnueabihf-
5 编译
直接输入make,编译驱动,会生成hellowold.ko文件,ko文件就是编译好的驱动模块。
步骤三:加载卸载驱动
1 加载驱动
将驱动拷贝到开发板或目标系统,然后使用加载指令:
insmod helloworld.ko
会打印入口加载的printk输出。
2 查看当前加载的驱动
lsmod
可以查看到加载的驱动模块。
3 卸载驱动
rmmod helloworld
可以移除指定驱动模块(PS:卸载驱动不需要.ko后缀),卸载成功会打印之前的printk输出。
总结
学习了驱动的基础框架,为了方便测试,下一篇将使用ubuntu.编译驱动,并做好本篇文章的相关实战测试。
OpenHarmony Camera源码分析
当前,开源在科技进步和产业发展中扮演着越来越重要的角色,OpenAtom OpenHarmony(简称“OpenHarmony”)成为了开发者创新的温床,也为数字化产业的发展开辟了新天地。作为深开鸿团队的OS系统开发工程师,我长期致力于OpenHarmony框架层的研发,尤其是对OpenHarmony Camera模块的拍照、预览和录像功能深入研究。
OpenHarmony Camera是多媒体子系统中的核心组件,它提供了相机的预览、拍照和录像等功能。本文将围绕这三个核心功能,对OpenHarmony Camera源码进行详细的个我网站源码分析。
OpenHarmony相机子系统旨在支持相机业务的开发,为开发者提供了访问和操作相机硬件的接口,包括常见的预览、拍照和录像等功能。
系统的主要组成部分包括会话管理、设备输入和数据输出。在会话管理中,负责对相机的采集生命周期、参数配置和输入输出进行管理。设备输入主要由相机提供,开发者可设置和获取输入参数,如闪光灯模式、缩放比例和对焦模式等。数据输出则根据不同的场景分为拍照输出、预览输出和录像输出,每个输出分别对应特定的类,上层应用据此创建。
相机驱动框架模型在上层实现相机HDI接口,在下层管理相机硬件,如相机设备的枚举、能力查询、流的创建管理以及图像捕获等。
OpenHarmony相机子系统包括三个主要功能模块:会话管理、设备输入和数据输出。会话管理模块负责配置输入和输出,以及控制会话的开始和结束。设备输入模块允许设置和获取输入参数,而数据输出模块则根据应用场景创建不同的输出类,如拍照、预览和录像。
相关功能接口包括相机拍照、预览和录像。相机的主要应用场景涵盖了拍照、预览和录像等,本文将针对这三个场景进行流程分析。
在分析过程中,我们将通过代码注释对关键步骤进行详细解析。以拍照为例,大师解签 源码首先获取相机管理器实例,然后创建并配置采集会话,包括设置相机输入和创建消费者Surface以及监听事件,配置拍照输出,最后拍摄照片并释放资源。通过流程图和代码分析,我们深入理解了拍照功能的实现。
对于预览功能,流程与拍照类似,但在创建预览输出时有特定步骤。开始预览同样涉及启动采集会话,并调用相关接口进行预览操作。
录像功能则有其独特之处,在创建录像输出时,通过特定接口进行配置。启动录像后,调用相关方法开始录制,并在需要时停止录制。
通过深入分析这三个功能模块,我们对OpenHarmony Camera源码有了全面的理解,为开发者提供了宝贵的参考和指导。
本文旨在全面解析OpenHarmony Camera在预览、拍照和录像功能上的实现细节,希望能为开发者提供深入理解与实践的指导。对于感兴趣的技术爱好者和开发者,通过本文的分析,可以更深入地了解OpenHarmony Camera源码,从而在实际开发中应用这些知识。
linux设备驱动程序——i2c设备驱动源码实现
深入了解Linux内核中的i2c设备驱动程序详解 在Linux内核中,i2c设备驱动程序的实现是一个关键部分。本文将逐步剖析其形成、匹配及源码实现,以帮助理解i2c总线的工作原理。 首先,熟悉I2C的基本知识是必不可少的。作为主从结构,设备通过从机地址寻址,其工作流程涉及主器件对从机的qq客服图标源码通信。了解了基础后,我们接着来看Linux内核中的驱动程序框架。 Linux的i2c设备驱动程序框架由driver和device两部分构成。当driver和device加载到内存时,会自动调用match函数进行匹配,成功后执行probe()函数。driver中,probe()负责创建设备节点并实现特定功能;device则设置设备的I2C地址和选择适配器,如硬件I2C控制器。 示例代码中,i2c_bus_driver.c展示了driver部分的实现,而i2c_bus_device.ko和i2c_bus_device.ko的编译加载则验证了这一过程。加载device后,probe函数会被调用,确认设备注册成功。用户程序可测试驱动,通过读写传感器寄存器进行操作。 在设备创建方面,i2c_new_device接口允许在设备存在时加载驱动,但有时需要检测设备插入状态。这时,i2c_new_probed_device提供了检测功能,确保只有实际存在的设备才会被加载,有效管理资源。 深入源码分析,i2c_new_probed_device主要通过检测来实现设备存在性,最终调用i2c_new_device,但地址分配机制确保了board info中的地址与实际设备地址相符。 至此,关于Linux内核i2c驱动的讨论结束。希望这个深入解析对您理解i2c设备驱动有帮助。如果你对此话题有兴趣,可以加入作者牧野星辰的Linux内核技术交流群,获取更多学习资源。 学习资源Linux内核技术交流群:获取内核学习资料包,包括视频教程、电子书和实战项目代码
内核资料直通车:Linux内核源码技术学习路线+视频教程代码资料
学习直达:Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈
Linux驱动(驱动程序开发、驱动框架代码编译和测试)
驱动就是对底层硬件设备的操作进行封装,并向上层提供函数接口。
Linux系统将设备分为3类:字符设备、块设备、网络设备。
先看一张图,图中描述了流程,有助了解驱动。
用户态:
内核态:
驱动链表:管理所有设备的驱动,添加或查找, 添加是发生在我们编写完驱动程序,加载到内核。查找是在调用驱动程序,由应用层用户空间去查找使用open函数。驱动插入链表的顺序由设备号检索。
字符设备驱动工作原理:
在Linux的世界里一切皆文件,所有的硬件设备操作到应用层都会被抽象成文件的操作。当应用层要访问硬件设备,它必定要调用到硬件对应的驱动程序。Linux内核有那么多驱动程序,应用怎么才能精确的调用到底层的驱动程序呢?
当open函数打开设备文件时,可以根据设备文件对应的struct inode结构体描述的信息,可以知道接下来要操作的设备类型(字符设备还是块设备),还会分配一个struct file结构体。
根据struct inode结构体里面记录的设备号,可以找到对应的驱动程序。在Linux操作系统中每个字符设备都有一个struct cdev结构体。此结构体描述了字符设备所有信息,其中最重要的一项就是字符设备的操作函数接口。
找到struct cdev结构体后,linux内核就会将struct cdev结构体所在的内存空间首地址记录在struct inode结构体i_cdev成员中,将struct cdev结构体中的记录的函数操作接口地址记录在struct file结构体的f_ops成员中。
任务完成,VFS层会给应用返回一个文件描述符(fd)。这个fd是和struct file结构体对应的。接下来上层应用程序就可以通过fd找到struct file,然后在struct file找到操作字符设备的函数接口file_operation了。
其中,cdev_init和cdev_add在驱动程序的入口函数中就已经被调用,分别完成字符设备与file_operation函数操作接口的绑定,和将字符驱动注册到内核的工作。
驱动程序开发步骤:
Linux 内核就是由各种驱动组成的,内核源码中有大约 %是各种驱动程序的代码。内核中驱动程序种类齐全,可以在同类驱动的基础上进行修改以符合具体单板。
编写驱动程序的难点并不是硬件的具体操作,而是弄清楚现有驱动程序的框架,在这个框架中加入这个硬件。
一般来说,编写一个 linux 设备驱动程序的大致流程如下:
下面以一个简单的字符设备驱动框架代码来进行驱动程序的开发、编译等。
基于驱动框架的代码开发:
上层调用代码
驱动框架代码
驱动开发的重点难点在于读懂框架代码,在里面进行设备的添加和修改。
驱动框架设计流程:
1. 确定主设备号
2. 定义结构体 类型 file_operations
3. 实现对应的 drv_open/drv_read/drv_write 等函数,填入 file_operations 结构体
4. 实现驱动入口:安装驱动程序时,就会去调用这个入口函数,执行工作:
① 把 file_operations 结构体告诉内核:注册驱动程序register_chrdev.
② 创建类class_create.
③ 创建设备device_create.
5. 实现出口:卸载驱动程序时,就会去调用这个出口函数,执行工作:
① 把 file_operations 结构体从内核注销:unregister_chrdev.
② 销毁类class_create.
③ 销毁设备结点device_destroy.
6. 其他完善:GPL协议、入口加载
驱动模块代码编译和测试:
编译阶段:
驱动模块代码编译(模块的编译需要配置过的内核源码,编译、连接后生成的内核模块后缀为.ko,编译过程首先会到内核源码目录下,读取顶层的Makefile文件,然后再返回模块源码所在目录。)
将该驱动代码拷贝到 linux-rpi-4..y/drivers/char 目录下 文件中(也可选择设备目录下其它文件)
修改该文件夹下Makefile(驱动代码放到哪个目录,就修改该目录下的Makefile),将上面的代码编译生成模块,文件内容如下图所示:(-y表示编译进内核,-m表示生成驱动模块,CONFIG_表示是根据config生成的),所以只需要将obj-m += pin4drive.o添加到Makefile中即可。
回到linux-rpi-4..y/编译驱动文件
使用指令:ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- KERNEL=kernel7 make modules进行编译生成驱动模块。
加载内核驱动:
加载内核驱动(相当于通过insmod调用了module_init这个宏,然后将整个结构体加载到驱动链表中)。 加载完成后就可以在dev下面看到名字为pin4的设备驱动(这个和驱动代码里面static char *module_name="pin4"; //模块名这行代码有关),设备号也和代码里面相关。
lsmod查看系统的驱动模块,执行上层代码,赋予权限
查看内核打印的信息,如下图所示:表示驱动调用成功
在装完驱动后可以使用指令:sudo rmmod +驱动名(不需要写ko)将驱动卸载。
驱动调用流程:
上层空间的open去查找dev下的驱动(文件名),文件名背后包含了驱动的主设备号和次设备号。此时用户open触发一个系统调用,系统调用经过vfs(虚拟文件系统),vfs根据文件名背后的设备号去调用sys_open去判断,找到内核中驱动链表的驱动位置,再去调用驱动里面自己的dev_open函数。
为什么生成驱动模块需要在虚拟机上生成?树莓派不行吗?
生成驱动模块需要编译环境(linux源码并且编译,需要下载和系统版本相同的Linux内核源代码)。也可以在树莓派上面编译,但在树莓派里编译,效率会很低,要非常久。
Linux USB 驱动开发实例(一)——USB摄像头驱动实现源码分析
Linux下的USB摄像头驱动实现源码分析,主要通过四个部分完成:设备模块的初始化与卸载、上层软件接口模块、数据传输模块以及USB CORE的支持。
一、初始化设备模块
模块初始化和卸载通过调用`module_init`和`module_exit`函数实现,关键数据结构为USB驱动结构,支持即插即用功能,通过`spca5xx_probe`和`spca5xx_disconnect`函数。
二、上层软件接口模块
基于V4L协议规范,通过`file_operations`数据结构实现设备关键系统调用,功能包括:Open打开初始化、Close关闭、Read读取数据、Mmap内存映射、Ioctl获取文件信息等。Open功能初始化解码器模块,Read功能主要将数据从内核空间传至进程用户空间。
三、数据传输模块
采用tasklet实现同步快速数据传递,通过软件解码模块在`spcadecode.c`上解压缩图形数据流,如yyuyv、yuvy、jpeg、jpeg至RGB格式。解码算法依赖于硬件压缩算法,最终需DSP芯片实现。
四、USB CORE的支持
使用系统实现的USB CORE层提供函数接口,如`usb_control_msg`、`usb_sndctrlpipe`等,实现对USB端点寄存器的读写操作。
总结,本Linux USB摄像头驱动源码分析覆盖了驱动的初始化、上层接口实现、数据传输及USB CORE支持,涉及C/C++、Linux、Nginx等技术点。学习资料包括视频教程、技术路线图、文档等,通过私信获取。课程包含C/C++、Linux、Nginx等后端服务器架构开发技术,为学习者提供全面指导。
深入select多路复用内核源码加驱动实现
本文主要探讨了select多路复用内核源码的驱动实现过程。用户空间调用select库后,系统调用sys_select引导到内核处理。核心内容涉及四个关键结构体:poll_wqueues、poll_table_page、poll_table_entry和poll_table_struct。每个进程在select调用时,都会对应一个poll_wqueues结构体,用于统一管理所有fd的轮询操作,这是整个流程的基础。
poll_wqueues的inline_entries数组有限,当空间不足时,会动态扩展为物理内存页。当fd调用poll函数时,会分配poll_table_entry,首先从inline_entries开始,直到用完才分配新的物理页。poll_table_entry在__pollwait函数中起到关键作用,它存储了特定fd的file指针、硬件驱动的等待队列头和进程的poll_wqueues结构体。
总结来说,硬件驱动的事件等待队列头数量有限,每个进程仅有一个poll_wqueues结构体,但fd的数量取决于驱动程序的事件队列头数量。每个fd可能对应多个poll_table_entry,这些结构体在驱动程序中用于记录等待事件。当多个进程同时使用select监控同一设备,每个进程的poll_table_entry数量将保持一致。
do_select函数通过遍历n个fd,调用它们的poll函数,驱动程序如字符设备evdev中的poll函数会与poll_wqueues.poll_table关联。poll_table结构简单,包含函数指针和key值,key值会根据fd的监测需求变化。当设备有IO事件时,驱动程序会调用相关函数,唤醒select进程,最后select函数检查并返回用户空间。
本文还通过实例,如字符设备驱动和内存字符设备驱动模拟,展示了select在内核中实际操作的过程。通过驱动程序实现poll接口,使得设备支持select机制,用户空间的应用程序可以灵活监控多个fd的事件。