本站提供最佳微信棋牌我源码服务,欢迎转载和分享。

【3m互助源码】【0.5的源码】【云平台 源码】哈希投注源码_哈希竞猜

2025-01-11 18:55:28 来源:长沙小程序源码 分类:焦点

1.死磕以太坊源码分析之Fetcher同步
2.PostgreSQL-源码学习笔记(5)-索引
3.String源码分析(1)--哈希篇
4.HashMap实现原理
5.十二点哈希查找的哈希哈希硬件实现(一):哈希查找
6.HashMap实现原理一步一步分析(1-put方法源码整体过程)

哈希投注源码_哈希竞猜

死磕以太坊源码分析之Fetcher同步

       区块数据同步分为被动同步和主动同步,Fetcher负责被动同步,投注主要任务包括接收新区块广播并进行同步。源码新产生的竞猜区块通过NewBlockHashesMsg 和 NewBlockMsg 进行传播,Fetcher对象通过接收这些消息发现新的哈希哈希区块信息。Fetcher在内部将同步过程分为几个阶段,投注3m互助源码并为每个阶段设置状态字段,源码用于记录阶段数据。竞猜首先同步区块哈希,哈希哈希当接收到哈希时,投注会将哈希标记在远程节点上,源码并在本地数据库中查找是竞猜否存在该哈希,若不存在,哈希哈希则放入unknown列表,投注之后通过channel通知本地fetcher模块请求该区块的源码header和body。fetcher模块根据接收的header和body状态,在fetching和completing列表中进行管理。当确认fetching和completing列表中不存在指定区块哈希时,将哈希放入到announced列表,并准备拉取header和body。fetcher模块通过fetchTimer周期性地从announced列表中选择区块哈希,进行header的拉取。拉取header时,选择要下载的区块,从announced转移到fetching中,并发送下载请求。header请求由远程节点通过GetBlockHeadersMsg处理,并返回给本地节点。header处理包括过滤和通知downloader对象。header过滤主要步骤涉及校验、过滤与本地数据库的不匹配块以及同步算法的header等。过滤后的header放入complete或incomplete列表。body同步的过程涉及从complete列表中选择哈希,进行同步body。body请求通过p.RequestBodies发送GetBlockBodiesMsg消息,0.5的源码并在downloader对象中处理。body过滤主要涉及过滤和同步逻辑,最终导入完整块到数据库。同步区块哈希和区块的整个流程涉及复杂的机制和逻辑,包括DOS攻击的防范、区块高度的限制、header和body的同步等,最终目标是确保本地区块链与远程节点保持同步状态。

PostgreSQL-源码学习笔记(5)-索引

       索引是数据库中的关键结构,它加速了查询速度,尽管会增加内存和维护成本,但效益通常显著。在PG中,索引类型丰富多样,包括B-Tree、Hash、GIST、SP-GIST、GIN和BGIN。所有索引本质上都是独立的数据结构,与数据表并存。

       查询时,没有索引会导致全表扫描,效率低下。创建索引可以快速定位满足条件的元组,显著提升查询性能。PG中的索引操作函数,如pg_am中的注册,为上层模块提供了一致的接口,这些函数封装在IndexAmRoutine和IndexScanDesc中。

       B-Tree索引采用Lehman和Yao的算法,每个非根节点有兄弟指针,页面包含"high key",用于快速扫描。云平台 源码PG的B-Tree构建和维护流程涉及BTBuildState、spool、元页信息等结构,包括创建、插入、扫描等操作。

       哈希索引在硬盘上实现,支持故障恢复。它的页面结构复杂,包括元页、桶页、溢出页和位图页。插入和扫描索引元组时,需要动态管理元页缓存以提高效率。

       GiST和GIN索引提供了更大的灵活性,支持用户自定义索引方法。GiST适用于通用搜索,而GIN专为复合值索引设计,支持全文搜索。它们在创建时需要实现特定的访问方法和函数。

       尽管索引维护有成本,但总体上,它们对提高查询速度的价值不可忽视。了解并有效利用索引是数据库优化的重要环节。

String源码分析(1)--哈希篇

       本文基于JDK1.8,从Java中==符号的使用开始,解释了它判断的是对象的内存地址而非内容是否相等。接着,通过分析String类的equals()方法实现,说明了在比较字符串时,应使用equals()而非==,因为equals()方法可以准确判断字符串内容是否相等。

       深入探讨了String类作为“值类”的特性,即它需要覆盖Object类的筹码公式源码equals()方法,以满足比较字符串时逻辑上相等的需求。同时,强调了在覆盖equals()方法时也必须覆盖hashCode()方法,以确保基于散列的集合(如HashMap、HashSet和Hashtable)可以正常工作。解释了哈希码(hashcode)在将不同的输入映射成唯一值中的作用,以及它与字符串内容的关系。

       在分析String类的hashcode()方法时,介绍了计算哈希值的公式,包括使用这个奇素数的原因,以及其在计算性能上的优势。进一步探讨了哈希碰撞的概念及其产生的影响,提出了防止哈希碰撞的有效方法之一是扩大哈希值的取值空间,并介绍了生日攻击这一概念,解释了它如何在哈希空间不足够大时制造碰撞。

       最后,总结了哈希碰撞与散列表性能的关系,以及在满足安全与成本之间找到平衡的重要性。提出了确保哈希值的最短长度的考虑因素,并提醒读者在理解和学习JDK源码时,可以关注相关公众号以获取更多源码分析文章。

HashMap实现原理

        HashMap在实际开发中用到的频率非常高,面试中也是热点。所以决定写一篇文章进行分析,希望对想看源码的人起到一些帮助,看之前需要对链表比较熟悉。

        以下都是我自己的理解,欢迎讨论,写的不好轻喷。

        HashMap中的数据结构为散列表,又名哈希表。在这里我会对散列表进行一个简单的介绍,在此之前我们需要先回顾一下 数组、链表的优缺点。

        数组和链表的优缺点取决于他们各自在内存中存储的模式,也就是直接使用顺序存储或链式存储导致的。无论是数组还是链表,都有明显的缺点。而在实际业务中,我们想要的往往是寻址、删除、插入性能都很好的数据结构,散列表就是这样一种结构,它巧妙的结合了数组与链表的优点,并将其缺点弱化(并不是完全消除)

        散列表的做法是将key映射到数组的某个下标,存取的时候通过key获取到下标(index)然后通过下标直接存取。速度极快,而将key映射到下标需要使用散列函数,又名哈希函数。说到哈希函数可能有人已经想到了,如何将key映射到数组的下标。

        图中计算下标使用到了以下两个函数:

        值得注意的是,下标并不是通过hash函数直接得到的,计算下标还要对hash值做index()处理。

        Ps:在散列表中,数组的格子叫做桶,下标叫做桶号,桶可以包含一个key-value对,为了方便理解,后文不会使用这两个名词。

        以下是哈希碰撞相关的说明:

        以下是下标冲突相关的说明:

        很多人认为哈希值的碰撞和下标冲突是同一个东西,其实不是的,它们的正确关系是这样的,hashCode发生碰撞,则下标一定冲突;而下标冲突,hashCode并不一定碰撞

        上文提到,在jdk1.8以前HashMap的实现是散列表 = 数组 + 链表,但是到目前为止我们还没有看到链表起到的作用。事实上,HashMap引入链表的用意就是解决下标冲突。

        下图是引入链表后的散列表:

        如上图所示,左边的竖条,是一个大小为的数组,其中存储的是链表的头结点,我们知道,拥有链表的头结点即可访问整个链表,所以认为这个数组中的每个下标都存储着一个链表。其具体做法是,如果发现下标冲突,则后插入的节点以链表的形式追加到前一个节点的后面。

        这种使用链表解决冲突的方法叫做:拉链法(又叫链地址法)。HashMap使用的就是拉链法,拉链法是冲突发生以后的解决方案。

        Q:有了拉链法,就不用担心发生冲突吗?

        A:并不是!由于冲突的节点会不停的在链表上追加,大量的冲突会导致单个链表过长,使查询性能降低。所以一个好的散列表的实现应该从源头上减少冲突发生的可能性,冲突发生的概率和哈希函数返回值的均匀程度有直接关系,得到的哈希值越均匀,冲突发生的可能性越小。为了使哈希值更均匀,HashMap内部单独实现了hash()方法。

        以上是散列表的存储结构,但是在被运用到HashMap中时还有其他需要注意的地方,这里会详细说明。

        现在我们清楚了散列表的存储结构,细心的人应该已经发现了一个问题:Java中数组的长度是固定的,无论哈希函数是否均匀,随着插入到散列表中数据的增多,在数组长度不变的情况下,链表的长度会不断增加。这会导致链表查询性能不佳的缺点出现在散列表上,从而使散列表失去原本的意义。为了解决这个问题,HashMap引入了扩容与负载因子。

        以下是和扩容相关的一些概念和解释:

        Ps:扩容要重新计算下标,扩容要重新计算下标,扩容要重新计算下标,因为下标的计算和数组长度有关,长度改变,下标也应当重新计算。

        在1.8及其以上的jdk版本中,HashMap又引入了红黑树。

        红黑树的引入被用于替换链表,上文说到,如果冲突过多,会导致链表过长,降低查询性能,均匀的hash函数能有效的缓解冲突过多,但是并不能完全避免。所以HashMap加入了另一种解决方案,在往链表后追加节点时,如果发现链表长度达到8,就会将链表转为红黑树,以此提升查询的性能。

十二点哈希查找的硬件实现(一):哈希查找

       一、引子:哈希查找的硬件探索

       在数据检索的世界中,哈希查找如同一把神秘的钥匙,以其惊人的效率赢得了广泛应用。它通过键值的直接映射,消除了传统查找方式中对键值区分的繁琐,如在ARP表查询中的高效表现。选择一个合适的哈希函数是关键,如简单的加减乘除、取余运算,甚至位操作,都需要考量元素分布的特性。

       二、精品游戏源码碰撞解决:挑战与策略

       然而,哈希查找并非一帆风顺,当多个键值映射到同一个位置时,我们面临碰撞的问题。这可能导致查询结果的不确定性。解决之道有开放定址法、链地址法,甚至还有公共溢出区和再哈希法。开放定址法与链地址法则虽能应对冲突,但时间复杂度有所增加。公共溢出区则需要额外的空间,而再哈希法尽管时间复杂度较低,却不能确保总能找到空闲位置。

       三、硬件挑战与突破

       在硬件层面实现哈希查找并非易事,它涉及复杂的逻辑设计和性能优化。硬件哈希表结构的比较与选择,将在后续章节中详述。感兴趣的读者可以参考我在gitee上的项目:twelvenine/hashtable-verilog,那里包含了详细的源码和性能测试结果,是我们深入理解哈希查找硬件实现的重要资源。

       四、结语:期待你的参与

       哈希查找的硬件之旅还在继续,每一步都需要我们深入思考和实践。如果你对这些技术有疑问,或者想要分享你的见解,欢迎在评论区留言,或者通过私信与我交流。让我们一起探索哈希查找在硬件世界中的无限可能。

HashMap实现原理一步一步分析(1-put方法源码整体过程)

       本文分享了HashMap内部的实现原理,重点解析了哈希(hash)、散列表(hash table)、哈希码(hashcode)以及hashCode()方法等基本概念。

       哈希(hash)是将任意长度的输入通过散列算法转换为固定长度输出的过程,建立一一对应关系。常见算法包括MD5加密和ASCII码表。

       散列表(hash table)是一种数据结构,通过关键码值映射到表中特定位置进行快速访问。

       哈希码(hashcode)是散列表中对象的存储位置标识,用于查找效率。

       Object类中的hashCode()方法用于获取对象的哈希码值,以在散列存储结构中确定对象存储地址。

       在存储字母时,使用哈希码值对数组大小取模以适应存储范围,防止哈希碰撞。

       HashMap在JDK1.7中使用数组+链表结构,而JDK1.8引入了红黑树以优化性能。

       HashMap内部数据结构包含数组和Entry对象,数组用于存储Entry对象,Entry对象用于存储键值对。

       在put方法中,首先判断数组是否为空并初始化,然后计算键的哈希码值对数组长度取模,用于定位存储位置。如果发生哈希碰撞,使用链表解决。

       本文详细介绍了HashMap的存储机制,包括数组+链表的实现方式,以及如何处理哈希碰撞。后续文章将继续深入探讨HashMap的其他特性,如数组长度的优化、多线程环境下的性能优化和红黑树的引入。

Redis7.0源码阅读:哈希表扩容、缩容以及rehash

       当哈希值相同发生冲突时,Redis 使用链表法解决,将冲突的键值对通过链表连接,但随着数据量增加,冲突加剧,查找效率降低。负载因子衡量冲突程度,负载因子越大,冲突越严重。为优化性能,Redis 需适时扩容,将新增键值对放入新哈希桶,减少冲突。

       扩容发生在 setCommand 部分,其中 dictKeyIndex 获取键值对索引,判断是否需要扩容。_dictExpandIfNeeded 函数执行扩容逻辑,条件包括:不在 rehash 过程中,哈希表初始大小为0时需扩容,或负载因子大于1且允许扩容或负载因子超过阈值。

       扩容大小依据当前键值对数量计算,如哈希表长度为4,实际有9个键值对,扩容至(最小的2的n次幂大于9)。子进程存在时,dict_can_resize 为0,反之为1。fork 子进程用于写时复制,确保持久化操作的稳定性。

       哈希表缩容由 tryResizeHashTables 判断负载因子是否小于0.1,条件满足则重新调整大小。此操作在数据库定时检查,且无子进程时执行。

       rehash 是为解决链式哈希效率问题,通过增加哈希桶数量分散存储,减少冲突。dictRehash 函数完成这一任务,移动键值对至新哈希表,使用位运算优化哈希计算。渐进式 rehash 通过分步操作,减少响应时间,适应不同负载情况。定时任务检测服务器空闲时,进行大步挪动哈希桶。

       在 rehash 过程中,数据查询首先在原始哈希表进行,若未找到,则在新哈希表中查找。rehash 完成后,哈希表结构调整,原始表指向新表,新表内容返回原始表,实现 rehash 结果的整合。

       综上所述,Redis 通过哈希表的扩容、缩容以及 rehash 动态调整哈希桶大小,优化查找效率,确保数据存储与检索的高效性。这不仅提高了 Redis 的性能,也为复杂数据存储与管理提供了有力支持。

死磕以太坊源码分析之Kademlia算法

       Kademlia算法是一种点对点分布式哈希表(DHT),它在复杂环境中保持一致性和高效性。该算法基于异或指标构建拓扑结构,简化了路由过程并确保了信息的有效传递。通过并发的异步查询,系统能适应节点故障,而不会导致用户等待过长。

       在Kad网络中,每个节点被视作一棵二叉树的叶子,其位置由ID值的最短前缀唯一确定。节点能够通过将整棵树分割为连续、不包含自身的子树来找到其他节点。例如,节点可以将树分解为以0、、、为前缀的子树。节点通过连续查询和学习,逐步接近目标节点,最终实现定位。每个节点都需知道其各子树至少一个节点,这有助于通过ID值找到任意节点。

       判断节点间距离基于异或操作。例如,节点与节点的距离为,高位差异对结果影响更大。异或操作的单向性确保了查询路径的稳定性,不同起始节点进行查询后会逐步收敛至同一路径,减轻热门节点的存储压力,加快查询速度。

       Kad路由表通过K桶构建,每个节点保存距离特定范围内的节点信息。K桶根据ID值的前缀划分距离范围,每个桶内信息按最近至最远的顺序排列。K桶大小有限,确保网络负载平衡。当节点收到PRC消息时,会更新相应的K桶,保持网络稳定性和减少维护成本。K桶老化机制通过随机选择节点执行RPC_PING操作,避免网络流量瓶颈。

       Kademlia协议包括PING、STORE、FIND_NODE、FIND_VALUE四种远程操作。这些操作通过K桶获得节点信息,并根据信息数量返回K个节点。系统存储数据以键值对形式,BitTorrent中key值为info_hash,value值与文件紧密相关。RPC操作中,接收者响应随机ID值以防止地址伪造,并在回复中包含PING操作校验发送者状态。

       Kad提供快速节点查找机制,通过参数调节查找速度。节点x查找ID值为t的节点,递归查询最近的节点,直至t或查询失败。递归过程保证了收敛速度为O(logN),N为网络节点总数。查找键值对时,选择最近节点执行FIND_VALUE操作,缓存数据以提高下次查询速度。

       数据存储过程涉及节点间数据复制和更新,确保一致性。加入Kad网络的节点通过与现有节点联系,并执行FIND_NODE操作更新路由表。节点离开时,系统自动更新数据,无需发布信息。Kad协议设计用于适应节点失效,周期性更新数据到最近邻居,确保数据及时刷新。

【本文网址:http://04.net.cn/html/06c444395550.html 欢迎转载】

copyright © 2016 powered by 皮皮网   sitemap