1.Elasticsearch7.8.0集成IK分词器改源码实现MySql5.7.2实现动态词库实时更新
2.ElasticSearch源码:Shard Allocation与Rebalance(1)
3.java中通过Elasticsearch实现全局检索功能的方法和步骤及源代码
4.Elasticsearch 源码探究 ——故障探测和恢复机制
5.elasticsearch wildcard 慢查询原因分析(深入到源码!!!)
6.ElasticSearch源码:数据类型
Elasticsearch7.8.0集成IK分词器改源码实现MySql5.7.2实现动态词库实时更新
本文旨在探讨 Elasticsearch 7.8.0 集成 IK 分词器的改源码实现,配合 MySQl 5.7.2 实现动态词库实时更新的方法。
IK 分词器源码通过 URL 请求文件或接口实现热更新,无需重启 ES 实例。然而,这种方式并不稳定,电影票预订源码因此,采用更为推荐的方案,即修改源码实现轮询查询数据库,以实现实时更新。
在进行配置时,需下载 IK 分词器源码,并确保 maven 依赖与 ES 版本号相匹配。引入 MySQl 驱动后,开始对源码进行修改。
首先,创建一个名为 HotDictReloadThread 的新类,用于执行远程词库热更新。接着,修改 Dictionary 类的 initial 方法,以创建并启动 HotDictReloadThread 实例,执行字典热更新操作。
在 Dictionary 类中,找到 reLoadMainDict 方法,针对扩展词库维护的逻辑,新增代码加载 MySQl 词库。为此,需预先在数据库中创建一张表,用于维护扩展词和停用词。同时,在项目根路径的 config 目录下创建 jdbc-reload.properties 配置文件,用于数据库连接配置。
通过 jdbc-reload.properties 文件加载数据库连接,执行扩展词 SQL,将结果集添加到扩展词库中。类似地,实现同步 MySQl 停用词的逻辑,确保代码的清晰性和可维护性。
完成基础配置后,打包插件并将 MySQl 驱动 mysql-connector-java.jar 与插件一同发布。将插件置于 ES 的 plugins 目录下,并确保有相应的mfc显示串口源码目录结构。启动 ES,查看日志输出,以验证词库更新功能的运行状态。
在此过程中,可能遇到如 Column 'word' not found、Could not create connection to database server、no suitable driver found for jdbc:mysql://...、AccessControlException: access denied 等异常。通过调整 SQL 字段别名、确认驱动版本匹配、确保正确配置环境以及修改 Java 政策文件,这些问题均可得到解决。
本文通过具体步骤和代码示例,详细介绍了 Elasticsearch 7.8.0 集成 IK 分词器,配合 MySQl 5.7.2 实现动态词库实时更新的完整流程。读者可根据本文指南,完成相关配置和代码修改,以实现高效且稳定的词库管理。
ElasticSearch源码:Shard Allocation与Rebalance(1)
ElasticSearch源码版本 7.5.2 遇到ES中未分配分片的情况时,特别是在大型集群中,处理起来会比较复杂。Master节点负责分片分配,通过调用allocationService.reroute方法执行分片分配,这是关键步骤。 在分布式系统中,诸如Kafka和ElasticSearch,平衡集群内的数据和分片分配是至关重要的。Kafka的leader replica负责数据读写,而ElasticSearch的主分片负责写入,副分片承担读取。如果集群内节点间的负载不平衡,会严重降低系统的健壮性和性能。主分片和副分片集中在某个节点的情况,一旦该节点异常,分布式系统的高可用性将不复存在。因此,分片的再平衡(rebalance)是必要的。 分片分配(Shard Allocation)是指将一个分片指定给集群中某个节点的过程。这一决策由主节点完成,涉及决定哪个分片分配到哪个节点,以及哪个分片为主分片或副分片。VBexe文件看源码分片分配(Shard Allocation)
重要参数包括:cluster.routing.allocation.enable,该参数可以动态调整,控制分片的恢复和分配。重新启动节点时,此设置不会影响本地主分片的恢复。如果重新启动的节点具有未分配的主分片副本,则会立即恢复该主分片。触发条件
分片分配的触发条件通常与集群状态有关,具体细节在后续段落中展开。分片再平衡(Shard Rebalance)
重要参数包括:cluster.routing.rebalance.enable,用于控制整个集群的分片再平衡。再平衡的触发条件与集群分片数的变化有关,操作需要在业务低峰期进行,以减少对集群的影响。 再平衡策略的触发条件主要由以下几个参数控制:定义分配在节点的分片数的因子阈值。
定义分配在节点某个索引的分片数的因子阈值。
超出这个阈值时就会重新分配分片。
从逻辑角度和磁盘存储角度考虑,再平衡可确保集群中每个节点的分片数均衡,避免单节点负担过重。同时,确保索引的分片均匀分布,避免集中在某一分片。再平衡决策
再平衡决策涉及两个关键组件:分配器(allocator)和决策者(deciders)。 分配器负责寻找最优节点进行分片分配,通过将拥有分片数量最少的节点列表按分片数量递增排序。对于新建索引,分配器的目标是以均衡方式将新索引的分片分配给集群节点。 决策者依次遍历分配器提供的节点列表,判断是否分配分片,考虑分配过滤规则和是否超过节点磁盘容量阈值等因素。手动执行再平衡
客户端可以通过发起POST请求到/_cluster/reroute来执行再平衡操作。此操作在服务端解析为两个命令,分别对应分片移动和副本分配。内部模块执行再平衡
ES内部在触发分片分配时会调用AllocationService的reroute方法来执行再平衡。总结
无论是手动执行再平衡命令还是ES内部自动执行,最终都会调用reroute方法来实现分片的再平衡。再平衡操作涉及两种主要分配器(GatewayAllocator和ShardsAllocator),每种分配器都有不同的实现策略,以优化分配过程。决策者(Deciders)在再平衡过程中起关键作用,帝国搞笑模板源码确保决策符合集群状态和性能要求。再平衡策略和决策机制确保了ElasticSearch集群的高效和稳定运行。java中通过Elasticsearch实现全局检索功能的方法和步骤及源代码
Java中通过Elasticsearch实现全局检索功能的方法和步骤
Elasticsearch,作为基于Lucene的开源搜索引擎,提供了分布式、RESTful接口和无模式JSON文档支持,其特性包括自动发现、分布式、可扩展性和高可靠性等。下面,我们将详细介绍如何使用Java Client API在Java项目中实现全局检索功能。步骤1:添加依赖
首先,你需要在项目中添加Elasticsearch Java客户端的Maven依赖,找到对应版本号(例如:{ version})后,将以下代码添加到pom.xml文件中:步骤2:连接Elasticsearch
通过RestHighLevelClient连接Elasticsearch,如示例所示:步骤3:创建索引
在进行检索前,需创建索引,如下所示:步骤4:添加文档
创建索引后,向其中添加文档,例如:步骤5:执行全局检索
执行检索操作,查找符合条件的文档,如代码所示:步骤6:处理和展示结果
获取并处理搜索结果,将匹配的文档信息展示给用户:步骤7:关闭连接
检索操作结束后,别忘了关闭与Elasticsearch的连接: 通过以上步骤,你已经掌握了在Java中使用Elasticsearch进行全局检索的基本流程。Elasticsearch的强大功能远不止于此,包括排序、分页和聚合等,可以满足更多复杂搜索需求。深入学习,你可以参考Elasticsearch官方文档。Elasticsearch 源码探究 ——故障探测和恢复机制
Elasticsearch 故障探测及熔断机制的深入探讨
在Elasticsearch的7..2版本中,节点间的故障探测及熔断机制是确保系统稳定运行的关键。故障监测主要聚焦于服务端如何应对不同场景,包括但不限于主节点和从节点的故障,以及数据节点的离线。
在集群故障探测中,Elasticsearch通过leader check和follower check机制来监控节点状态。这两个检查通过名为same线程池的线程执行,该线程池具有特殊属性,即在调用者线程中执行任务,获取php源码软件且用户无法直接访问。在配置中,Elasticsearch允许检查偶尔失败或超时,但只有在连续多次检查失败后才认为节点出现故障。
选举认知涉及主节点的选举机制,当主节点出现故障时,会触发选举过程。通过分析相关选举配置,可以理解主节点与备节点之间的切换机制。
分片主从切换在节点离线时自动执行,该过程涉及状态更新任务和特定线程池的执行。在完成路由变更后,master节点同步集群状态,实现主从分片切换,整个过程在资源良好的情况下基本为秒级。
客户端重试机制在Java客户端中体现为轮询存活节点,确保所有节点均等机会处理请求,避免单点过载。当节点故障时,其加入黑名单,客户端在发送请求时会过滤出活跃节点进行选择。
故障梳理部分包括主master挂掉、备master挂掉、单个datanode挂掉、活跃master节点和一个datanode同时挂掉、服务端熔断五种故障场景,以及故障恢复流程图。每种场景的处理时间、集群状态变化、对客户端的影响各有不同。
最佳实践思考总结部分包括客户端和服务器端实践的复盘,旨在提供故障预防和快速恢复策略的建议。通过深入理解Elasticsearch的故障探测及熔断机制,可以优化系统设计,提高生产环境的稳定性。
elasticsearch wildcard 慢查询原因分析(深入到源码!!!)
本文深入剖析 Elasticsearch 中 wildcards 查询导致的性能问题及其解决之道,结合源码解析,揭示其背后的机制。阅读本文后,您将深入了解 Elasticsearch 的查询过程、查询性能瓶颈以及如何利用 Elasticsearch profile API 进行性能分析。
首先,理解 Elasticsearch 的查询流程分为两个阶段:使用 Elasticsearch 对卢瑟库(Lucece)进行查询,以及卢瑟库本身进行查询。卢瑟库只能单机存储,因此,查询过程主要关注如何高效地在卢瑟库中查找文档。
在卢瑟库中,查询过程涉及以下关键步骤:重写(rewrite)查询类型、创建权重对象、构建 bulk scorer 对象以及进行打分。重写阶段将复杂查询转换为更底层的查询类型,如 MultiTermQueryConstantScoreWrapper。权重对象用于计算文档的权重和构建得分对象,以确定文档的排序。打分阶段对匹配的文档进行批量化打分,然后通过收集器对象汇总结果。
理解卢瑟库查询过程的关键在于了解其查询机制,尤其是如何筛选匹配文档。卢瑟库的查询过程包括创建 bulk scorer 对象,以及在 scorer 对象中遍历匹配的文档。PhraseQuery 和 WildcardQuery 类型的查询分别在不同的阶段进行文档筛选。WildcardQuery 的主要耗时发生在构建 scorer 阶段,由于其需要遍历字段中的所有 term 并与有限状态机进行匹配,此过程较为耗时且对 CPU 资源消耗较大。
在性能分析方面,Elasticsearch 提供了 profile API,允许在查询时收集分析结果。通过装饰器模式,profile API 在关键方法前后添加了埋点,以统计耗时时间。分析 profile 返回的结果,可以揭示查询在不同阶段的性能瓶颈,例如在构建 scorer 阶段的耗时。了解这些信息对于优化查询性能和资源利用至关重要。
综上所述,本文旨在深入探究 Elasticsearch wildcards 查询的性能问题,揭示其工作原理以及如何通过分析性能数据进行优化。通过本文的讲解,您将能够更好地理解 Elasticsearch 的查询过程、识别性能瓶颈,并采取有效措施提升系统性能。
ElasticSearch源码:数据类型
ElasticSearch源码版本 7.5.2,其底层基于Lucene,Lucene好比汽车的发动机,提供了基础的存储和查询功能,而ES则在此基础上增加了分布式特性。本文将简要探讨ES中的数据类型。
Lucene的FieldType是描述字段属性的核心,包含个属性,如倒排索引和DocValuesType,后者支持聚合排序。官方定义的类型如TextField,仅索引、分词但不存储,而用户可以根据需求自定义数据类型,尽管在ES中,所有数据类型都是自定义的。
Lucene文件格式类型各异,如Norms和Pre-Document Values,根据FieldType设置的不同属性,文件类型和存储结构会相应变化。Lucene通过不同的压缩类型和数据结构存储数据,但详细实现较为复杂。
在ES中,数据类型分为Meta-fields和Fields or properties。Meta-fields包括元数据字段如_index、_type和_id,它们存储在特定位置,但处理方式各异。Fields或properties则是开发的核心,包括String(text和keyword)、数字类型、Range类型、时间类型、Boolean和Binary等。
复杂数据类型如Object和Nested用于处理嵌套结构,而Geo-point和Geo-shape用于地理信息。特殊数据类型如IP、completion和Join则在特定场景下使用。Array要求数组内字段类型一致,Multi-fields则支持多种处理方式的字符串字段。
总体来说,ES的字段类型丰富且友好,但并非所有场景都适用。开发者在实际应用中应参考官方文档和代码来选择和使用。
参考资源:org.apache.lucene.codecs.lucene (Lucene 9.0.0核心API)、Elasticsearch Guide [7.5]、elastic.co/guide/en/ela...
SpringBoot如何集成Elasticsearch,这篇就够了
本章节主要介绍SpringBoot项目集成ElasticSearch的相关知识,包括集成版本、依赖、集成方式以及增删改查的使用。查看需要对Springboot项目有一定的了解。本文将采用官方推荐使用的Java High Level REST Client方式实现ElasticSearch操作。
Elasticsearch是一个基于Lucene的搜索服务器,它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布,是一种流行的企业级搜索引擎。
Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档。我们将Elasticsearch里存储文档数据和关系型数据库MySQL存储数据的概念进行一个类比如下图。
二、集成步骤
1.依赖引入
pom依赖如下,主要列出SpringBoot依赖版本以及ElasticSearch版本,其他需要依赖自行添加(本文使用的具体版本为 elasticsearch-rest-high-level-client-7..1.jar)
2.文件配置
yml配置ES对应参数
3.RestHighLevelClient配置
config配置,此处为单机配置,集群模式在此基础上修改也行
4.定义数据类型
定义数据类型,类似于mysql的表,定义好字段,该处用了lombok表达式,如不需要可自定义set、get方法取代 @Field()可以定义字段的类型以及分词等。
5.增删改查代码
通过restHighLevelClient对象对ElasticSearch数据库进行操作,restHighLevelClient由springboot容器创建管理,用户不需要进行配置,使用的时候注入即可,本次使用的是测试类代码编写方式。
6.高级查询代码
通过restHighLevelClient对象对ElasticSearch数据库进行高级查询操作
以上就是SpringBoot集成Elasticsearch数据库内容。
ElasticSearch客户端源码:RestHighLevelClient
ElasticSearch源码版本 7.5.2
RestHighLevelClient的核心在于提供多样的API给开发者使用,每个API均对应同步与异步两种请求方式,异步请求以async结尾,且需配合监听器处理响应结果。
在初始化RestHighLevelClient时,主要过程包括创建HttpClient、初始化RestClient以及启动HttpClient。HttpClient通过nio的reactor模式处理请求,并由线程工厂创建reactorThread。
初始化RestHighLevelClient实例时,核心字段registry的构建包括整合聚合类操作、插件类和自定义NamedXContentRegistry.Entry,最终构建出NamedXContentRegistry。
同步与异步请求的实现方式分为三对函数,分别增加parseEntity和处理异常返回Optional功能。同步请求方法在最终处理返回结果时,利用entityParser解析实体或返回Optional。异步请求则需要监听器,于监听器内处理返回结果。
以Delete By Query API为例,分析其同步请求流程包括构建请求、发起请求和处理响应。构建请求参数需遵循特定规则,发起请求后通过通用函数式调用方法执行,最后通过entityParser解析响应或返回Optional。
对于响应处理,Delete By Query API返回的是scroll request的响应,即BulkByScrollResponse,包含特定字段信息。此API的实现依赖于restHighLevelClient的performRequestAndParseEntity方法。
除了自身支持的API,RestHighLevelClient还提供对其他Client的接口。以IndicesClient为例,执行Delete Index API时,同样调用performRequestAndParseEntity方法实现。
综上所述,RestHighLevelClient作为ElasticSearch客户端,通过提供丰富的API、支持同步与异步请求,并通过初始化流程构建高效响应机制,为开发者提供了灵活且强大的数据检索与管理工具。
ElasticSearch客户端源码:RestClient初始化
RestClient初始化详解
在ElasticSearch 7.5.2版本中,推荐使用的客户端是RestHighLevelClient,它提供了丰富的API支持,包括同步和异步访问。然而,其底层的运作依赖于RestClient,后者是负载均衡、重试策略和集群发现等功能的基石。
RestClient是基于Apache HttpClient,所有的HTTP请求都通过HttpClient处理,包括连接池管理和HTTP协议实现。尽管ES服务器端使用Netty处理客户端的请求,但客户端并未采用Netty封装。
初始化RestClient时,会存储节点主机信息和安全认证实例。同步的performRequest方法可以阻塞等待直到响应或遇到异常,而异步的performRequestAsync则通过ResponseListener处理返回结果,支持取消请求,但仅能取消客户端层面的处理。
请求参数配置方面,HttpClient支持常见的请求头和请求体设置,如Socket超时、连接时间和加密等。请求头示例展示了HttpAsyncResponseConsumerFactory的内存管理,而请求体则可以使用JSON格式传递数据。
节点选择和负载均衡是通过轮询策略实现的,可以自定义NodeSelector来指定请求目标。节点失败后,会根据之前失败的次数决定重试策略,失败状态会被标记,重试间隔逐步增加。
在实际开发中,建议使用bulk API替代并行执行多个异步请求,以减少网络请求次数和带宽消耗。对于生产问题,理解Elasticsearch的负载均衡算法和故障恢复机制也至关重要。