1.【OpenCV】 OpenCV 源码编译并实现 CUDA 加速 (Windows)
2.OpenCV安装教程(编译源码,源码一次成功)提供安装好OpenCV的生成系统镜像
3.OpenCV在MacOS上源码编译OpenCV
4.CV实战Ubuntu18.04源码编译安装opencv-3.4.X+测试demo
5.MacBook(m1)源码编译opencv
6.编程工具篇06编译OpenCV+opencv_contrib
【OpenCV】 OpenCV 源码编译并实现 CUDA 加速 (Windows)
本文介绍了如何在Windows系统上使用OpenCV源码自行编译代码文件,实现CUDA加速,源码以满足对处理时间要求较高的生成场景。OpenCV是源码一个跨平台的计算机视觉和机器学习软件库,支持Linux、生成小米硬解源码Windows、源码Android和Mac OS等操作系统。生成
在实际使用中,源码OpenCV处理数据可能无法满足某些高速场景的生成需求,这时可以结合CUDA加速。源码为了实现CUDA加速,生成需要自行编译支持CUDA的源码依赖包。在本次文章中,生成我们将演示如何在Windows环境下使用CMake-gui + VS进行OpenCV源码的源码编译。
首先,确保环境准备充分。本次编译平台是Windows 系统,使用CMake-gui + VS进行编译。需要下载两个源码,分别是opencv和opencv_contrib,并保证版本一致,本文使用的版本为4.8.0。将两个文件解压到同一文件夹下。
然后,利用CMake创建并配置项目。在CMake软件中设置项目源码路径,并创建build文件夹,进行配置。在第一次配置后,输出编译平台选择,本文选择Visual Studio ,编译平台为x。配置中添加opencv_contrib模块引用,选择WITH_CUDA和OPENCV_DNN_CUDA,macd大牛启动指标源码以及其他相关选项。配置完成后,检查异常并解决。
在解决异常后,使用Visual Studio打开生成的OpenCV.sln解决方案文件,并运行ALL_BUILD项目。编译完成后,将获得包含依赖项的install文件夹和python_loader文件夹,用于支持Python API和C++ API的使用。
项目编译完成后,通过cv2.cuda.getCudaEnabledDeviceCount()接口方法检查CUDA设备是否存在。输出结果为1,表明CUDA设备已正确安装,项目编译成功。
总结,通过本文的步骤,实现了OpenCV源码编译并结合CUDA加速,提高了处理时间要求较高的场景的性能。后续将结合所编译的库进行项目开发与性能对比。
OpenCV安装教程(编译源码,一次成功)提供安装好OpenCV的系统镜像
本文提供了一套简洁明了的OpenCV安装教程,旨在帮助开发者实现一次成功安装。首先,选择官方Raspbian-buster-full系统作为操作平台,并建议更换源至清华源,以确保下载过程顺利,避免遇到如GTK2.0下载失败等问题。对于远程操作需求,外接屏幕或使用VNC远程连接是可行方案,同时通过tee命令记录编译过程,以便在远程连接中断时仍能查看详细信息。
安装系统镜像,完成OpenCV安装后,生成的中小医院系统源码镜像文件大小仅4.G,压缩后为2.G,直接烧录至TF卡即可使用。该系统已预装VNC等必备软件,配置了静态IP,提供详尽的使用指南,包括树莓派和Windows系统间的文件复制和传输方法。系统兼容树莓派4和3型号,对于有补充需求之处,将在文章末尾进行说明。
正式安装OpenCV,首先确保安装所需的依赖工具和图像、视频库。按照步骤逐一进行,包括安装构建必需工具、图像工具包、视频工具包、GTK2.0以及优化函数包。在编译OpenCV源码前,下载并解压OpenCV3.4.3及opencv_contrib3.4.3(选择版本时需确保二者版本号一致)。
采用直接下载或wget下载两种方法获取源码,解压后进入源码目录。创建release文件夹,用于存放cmake编译时产生的临时文件。设置cmake编译参数,安装目录默认为/usr/local,确保参数正确配置,尤其是对于root用户下的cmake命令,需修改OPENCV_EXTRA_MODULES_PATH的值为绝对路径。
编译过程中,确认进度到达%,以验证安装成功。进行其他配置,包括设置库路径,以便于使用OpenCV库,如何看bs架构源码也可选择不进行设置。配置opencv.conf和bash.bashrc文件,进行必要的参数添加,重启树莓派或重新登录用户后,测试OpenCV使用是否正常。
演示Python程序使用OpenCV画一条直线,确保Python编译器已安装,执行相关代码。系统镜像中额外提供远程连接和文件传输功能的说明,包括使用VNC或Putty等工具远程控制树莓派的方法,以及如何在树莓派与Windows系统间进行复制粘贴,通过autocutsel软件简化操作流程。
OpenCV在MacOS上源码编译OpenCV
MacOS上OpenCV源码编译与使用教程
在视觉任务中,开源库OpenCV经常被用到,它支持多种语言接口,适用于多平台。在MacOS上直接安装包不可用时,我们需要自行编译。本文将指导您从opencv_4.8.0和opencv_contrib_4.8.0版本入手,详细展示源码编译与配置过程。1. 下载源码并解压
首先,从官网下载对应版本(4.8.0)的源码,确保opencv与opencv_contrib的版本一致。通过命令行进行下载,解压后放置于工作目录。2. 准备CMake
OpenCV支持CMake编译,需要先安装。创建编译文件夹,然后使用CMake指令配置编译环境,注意指定opencv和opencv_contrib的路径。3. CMake编译与下载依赖
完成CMake配置后,进行make编译,注意网络通畅以确保第三方库的下载。编译成功后,java中arraylist源码详解会生成所需文件。4. 安装与案例测试
执行make install,安装OpenCV到指定路径。接着,创建一个C++文件main.cpp,编写简单代码以读取并展示,通过CMakeLists.txt文件配置编译路径。5. VS Code环境测试
在VS Code中,通过CMakeLists.txt配置并编译main.cpp,确认OpenCV库路径正确,运行程序,成功处理。总结
通过上述步骤,您已在MacOS上成功源码编译并配置了OpenCV,实现了处理功能。在实际项目中,这将为您提供灵活的环境和更好的控制。CV实战Ubuntu.源码编译安装opencv-3.4.X+测试demo
在Linux环境下,特别是Ubuntu .中安装OpenCV-3.4.x版本,需要理解其源码编译过程,本文将详细说明从源码编译到安装,以及测试demo的全过程。安装步骤分为源码下载、使用`apt-get`安装依赖项、从源码构建安装OpenCV、配置环境、验证安装情况以及卸载。在Linux环境下,确保系统稳定运行是关键步骤之一。以下为详细流程: 1. 源码下载 从OpenCV官网或GitHub下载OpenCV源码。选择版本时,考虑与项目的兼容性以及对最新特性的需求。 2. apt-get安装 Ubuntu下,OpenCV安装可通过两种方式:直接使用`$ sudo apt-get install python-opencv`进行快速安装,适用于仅在Python环境中使用OpenCV的情况;推荐从源码构建安装,以获取更新的代码版本,增强稳定性和可控性。 3. 从源码安装 从源码构建安装时,可选择默认安装位置或自定义安装位置。默认位置通常为`/usr/local`,而自定义位置需要额外配置。 3.1 构建依赖项 确保安装`cmake`, `gcc`, `g++`等构建工具。对于Python支持,选择安装Python 2和/或Python 3的特定模块。安装`GTK`支持用于图形界面应用,以及处理库(根据需要)。使用`cmake`下载`ippcv`库,注意**问题。 3.2 默认位置安装 使用`git`或下载的压缩包解压后,切换到源码目录,执行`cmake`命令以构建`CMakeLists.txt`,并创建`makefile`。指定构建参数时,`CMAKE_INSTALL_PREFIX`用于设置安装路径,通常为`/usr/local`。根据需要选择构建类型(`DEBUG`或`RELEASE`)和是否启用CUDA加速。 3.3 自定义位置安装 自定义安装时,使用`cmake`命令时需添加`-DCMAKE_INSTALL_PREFIX`参数,指向自定义安装目录。在安装后,还需配置扫描路径和设置环境变量,确保其他项目能够正确引用OpenCV库。 配置 配置步骤包括将OpenCV的`lib`路径添加到系统配置中,以便其他项目能够引用OpenCV库。通常,这涉及编辑`ld.so.conf`文件或通过环境变量设置。 验证查看版本 在终端或Python环境中,通过`pkg-config`命令或Python导入`cv2`模块查看OpenCV版本。 C++和Python demo测试 执行官方提供的示例代码,验证OpenCV功能。在C++环境中,通过指定`OpenCV_DIR`变量路径来正确引用库文件。在Python环境中,确保导入路径设置正确。 卸载 卸载OpenCV时,使用`make uninstall`命令。注意,仅删除了文件,留下的空文件夹可能需要手动删除。 通过遵循上述步骤,即可在Ubuntu .系统中成功安装OpenCV,并进行测试验证。确保安装过程的每个环节都得到正确配置,以避免潜在的问题和冲突。MacBook(m1)源码编译opencv
首先,从GitHub上获取OpenCV的源代码是实现MacBook (m1)本地编译的关键步骤。你可以通过运行以下命令来拉取最新版本:
bash
git clone /opencvopencv.git
如果你想锁定特定的版本,比如2.1分支,可以使用如下命令替换`[tag_name]`为实际的版本号:
bash
git clone --branch [tag_name] /opencvopencv.git
接下来,为了进行编译,你需要准备一个专门的构建目录,这可以通过以下命令创建:
bash
mkdir opencv_build
cd opencv_build
然后,运行CMake来配置编译环境:
bash
cmake ..
配置完成后,开始编译安装过程:
bash
make
sudo make install
整个过程涉及到了从GitHub获取源代码、创建编译目录、配置CMake并执行编译和安装。最后,务必确认你的目录结构包括了源代码、构建目录以及安装后的文件。
编程工具篇编译OpenCV+opencv_contrib
在进行Unity:从零开始搞AR教程时,我们需要集成ArUco功能,这就需要将opencv_contrib模块与opencv进行编译。以下是详细的编译步骤: 首先,访问CMake官网下载最新版本(如cmake-3..0-rc1-windows-x_.msi)并安装。 然后,去GitHub下载OpenCV(选择4.5.3版本)和opencv_contrib的源码,链接分别为:opencv-4.5.3-vc_vc.exe
Source code (zip)
下载后解压OpenCV和opencv_contrib的源码包。 接下来,使用CMake进行编译。在CMake的配置过程中,选择Visual Studio (根据你的系统调整),配置路径为opencv源代码目录和你想要生成二进制文件的位置。确保勾选"BUILD_opencv_world",并输入"OPENCV_EXTRA_MODULES_PATH"(如果有需要)。点击Configure,然后Generate,生成过程完成后进入build目录。 在build目录中,打开OpenCV.sln文件,选择“批生成”,勾选"ALL_BUILD"和"INSTALL",最后点击生成。编译完成后,头文件和动态库会在Install文件夹中找到。 最后一步,如果你已经在Windows系统上配置过OpenCV环境(参阅编程工具篇),则无需重复,直接使用生成的环境变量即可。如果之前未配置,建议参考相关教程进行设置或更新。python的opencv有源码吗?
Python中调用cv2库是通过编译C/C++代码并生成so文件实现的。opencv的cv2.so文件是通过cv2.cpp文件编译而成。此文件位于指定的gitee仓库中。在该仓库的特定行,使用cmake函数add_library指定生成cv2.so。
调用cv2.so的方法仅需导入cv2库即可。这句代码由自动生成的python_loader.cmake文件产生,该文件同样位于上述gitee仓库中。生成的文件存放在python_loader文件夹下,其中cv2/__init__.py文件导入了cv2.so,并利用了其中定义的C函数。
导入cv2.so并不足够,还需要借助numpy来处理数据结构。因此,在python_loader/cv2/__init__.py文件中,首先导入cv2.so,然后进一步导入了额外的python_loader/cv2/_extra_py_code/等。这里import cv2的语句存在歧义,根据当前环境决定是执行cv2/__init__.py还是查找cv2.so。
在执行import cv2时,实际执行的是python_loader/cv2/__init__.py文件。在该文件中,首先删除当前cv2模块,然后重新导入cv2.so。接着,导入了python_loader/cv2/_extra_py_code/gapi,为cv2添加了额外的数据处理函数。最终,通过py_code_loader.init('cv2')执行了_extra_py_code.init('cv2'),将gapi整合入cv2模块。
OpenCV的编译
为获得OpenCV的完整功能和优化性能,自行编译是必不可少的。以下是Windows 环境下,使用Visual Studio 在x平台上编译OpenCV 4.2.0的步骤详解。
首先,你需要安装CMake和Doxygen工具。CMake是跨平台的构建工具,对于OpenCV源码的支持使其适用于不同平台。在cmake.org下载并安装cmake-3..0-win-x.msi,同时,Doxygen用于生成文档,可从stack.nl/~dimitri/doxygen下载最新版本。
接着,从GitHub下载OpenCV 4.2.0的source.zip和opencv_contrib源码。将它们解压到同一文件夹中,准备后续编译。
在CMake中,设置Visual Studio win为编译工具,然后配置源文件和目标目录。在配置过程中,CMake可能需要从网络下载某些文件,需要手动处理下载或下载失败的问题。重要的是,对编译选项进行调整,如设置BUILD_DOCS为TRUE以生成文档,BUILD_SHARED_LIBS为FALSE创建静态库,以及BUILD_opencv_world为TRUE打包库。记得在OPENCV_EXTRA_MODULES_PATH中指定opencv_contrib的路径。
生成的OpenCV工程文件(sln文件)可用于Visual Studio 打开,但鉴于工程庞大,建议仅编译Opencv_WORLD项目并生成Debug和Release版本的库,它们会存储在build/lib/debug和build/lib/release目录中,可供后续使用。