1.ROS学习笔记@ROS安装
2.ROS博客基于ROS的码视自动驾驶数据集可视化项目(附源代码)
3.ROS入门笔记(七):详解ROS文件系统
4.ROS开源项目:(一)中文语音交互系统ROSECHO (二)教学级别无人车Tianracer
5.Cartographer源码详解|(2)Cartographer_ros
6.ROS2测试源码编译安装cartographer
ROS学习笔记@ROS安装
安装ROS的步骤如下:
首先,检查CMake版本是码视否已安装,若有新版本的码视Cmake,可稍后再安装。码视若未安装,码视则在安装ROS后安装所需版本的码视h5龙虎源码交易Cmake。
接着,码视确认Ubuntu安装的码视ROS版本。对于Ubuntu .,码视对应的码视是RS Melodic版本,需避免误安装其他版本。码视参考ROS官网查看其他对应版本。码视
安装步骤如下:
在安装前,码视确保Ubuntu软件和更新源已检查并更新。码视推荐更换为国内源以提高速度,码视例如阿里云、清华或中科大。
添加ROS软件源,使用终端输入相应命令。
设置ROS安装密钥,使用apt-key命令,同时检查软件包密钥。
更新Ubuntu软件源,使用终端输入命令。
安装ROS桌面完整版,输入终端命令,安装包括ROS、rqt、rviz和机器人通用库在内的内容。选择桌面安装或ROS-Base安装。
为安装特定ROS软件包,替换下划线为软件包名称的破折号,并使用命令查找可用包。
设置ROS环境变量,使用终端命令。若要自动添加到当前bash会话,可输入相应命令。对于zsh用户,需运行不同命令。
安装ROS工具,使用命令执行。
在使用ROS工具前,初始化rosdep,使用终端命令。若遇到从国外网站raw.githubusercontent.com拉取信息导致错误,可修改/etc/hosts和/etc/resolv.conf文件。
更新rosdep,使用终端命令。遇到更新超时错误时,可尝试多次执行或本地更新以解决。saltsatck源码
运行小海龟和rviz检查安装情况,使用roscore启动ROS核心,然后运行turtlesim_node和turtle_teleop_key控制小海龟,最后启动rviz检查高级功能。
至此,Ubuntu .的ROS安装过程结束。源码安装内容将在后续研究。
ROS博客基于ROS的自动驾驶数据集可视化项目(附源代码)
项目简介
基于加州大学伯克利分校 MSC Lab的自动驾驶数据集,本项目旨在进行数据集的可视化。项目源代码已上传至 GitHub,英文版文章与演示视频也已准备就绪。
数据集展示
左侧展示了GPS信号的可视化,通过 Mapviz 工具,将行驶过程中走过的路径显示出来,左上角则呈现了车前摄像头的视角。右侧是自定义的可视化,利用绿色代表 y 轴正方向,蓝色表示 x 轴正方向。紫色圆点表示汽车行驶过程中各个方向的加速度信息,天蓝色箭头指示汽车前进方向,绿色则代表不同强度的加速度。
问题与解决方案
在使用 Mapviz 可视化 GPS 信号时,遇到了数据格式不匹配的问题。通过在自定义的 package 中编写 `trans_GPS.cpp` 文件,成功实现了数据格式转换,解决了数据可视化的问题。同时,还撰写了关于 Mapviz 的基础使用教程。
加速度信息的可视化涉及确定坐标轴方向、避免信息跳动以及直观显示加速度大小。通过在 RVIZ 中绘制 x 和 y 轴,并使用平滑器处理频繁读取的 IMU 数据,成功解决了这些问题。极坐标系的引入使得加速度大小的显示更为直观。
汽车前进方向的可视化涉及到姿态信息的获取与 RVIZ 显示角度的调整。通过分析 IMU 的 orientation 数据,并设置 marker 的 orientation 值,实现了方向的正确显示。
相机信息的可视化面临格式转换问题。通过使用 `image_transport` 包装解决了传感器数据格式不兼容的问题。
总结
在本项目中,通过学习与实践 ROS 相关知识,成功实现了自动驾驶数据集的可视化。接下来,将集中精力深入学习 OSM 的使用,并着手进行 GPS 定位与搜索的小项目开发。
ROS入门笔记(七):详解ROS文件系统
ROS入门笔记(七):详细解析ROS文件系统 理解ROS工程的基础架构是关键。本章深入探讨了ROS的工程结构,特别是xext源码catkin编译系统、工作空间的创建与组织、package的构建以及常见文件的作用。这些内容有助于我们正确地建立和管理ROS项目。Catkin编译系统
ROS项目采用Catkin编译系统,它是基于CMake的高效工具,用于大型项目的编译与管理。早期的rosbuild已不适用,Catkin在Groovy版本中引入,提供了简化编译、更好的可移植性和跨平台支持,如今大部分核心软件包已切换至Catkin。工作空间结构
Catkin工作空间就像一个仓库,包含src、build和devel三个核心路径。src存放源代码,build用于编译,而devel则管理环境变量。创建和编译工作空间是ROS开发的基础步骤。Package的组织
Package是工作空间的基本单元,包含CMakeLists.txt和package.xml等文件。CMakeLists.txt定义编译规则,而package.xml则是包的详细描述,如依赖和许可信息。其他常见文件
launch文件:打包并启动程序,指定参数和控制指令。
msg/srv/action文件:自定义数据结构,用于消息、服务和动作的交互。
urdf/xacro:描述机器人模型的物理结构。
yaml文件:存储参数配置。
3D模型文件:dae/stl,用于3D模型展示。
rviz文件:配置RViz视窗的显示设置。
掌握这些基础文件和结构,是ROS开发和调试的基础。建议初学者从Catkin系统开始学习,逐步构建和管理项目。ROS开源项目:(一)中文语音交互系统ROSECHO (二)教学级别无人车Tianracer
开发之路永无止境,往往在最后期限的白板上写着的计划,往往只是一份空想。年初时,我定下了两个目标,计划在年末完成,然而时间在拖延中流逝,直到如今,我才发现,真正的开源精神并非一个人的单打独斗,而是众人协作的火焰。
记得一年前,agg 源码我四处奔波,从开源社区汲取养分,同时也渴望贡献出自己的力量。然而,回顾过去,我却发现并没有做出任何贡献。这次,我希望能够集结各路伙伴,如果有志于参与开源项目,我们能共同打造一个GitHub上的百星、千星项目。几位资深程序员已经搭建好了基础,硬件改进较多,但程序完善程度未达预期。我们期望有更多的年轻朋友加入我们,与我们一起学习软件的版本控制、代码规范和团队协作,共同完成复杂的机器人项目,实现成长与蜕变。
(一)中文语音交互系统ROSECHO
ROSECHO的GitHub源码库已准备好,欢迎先star再深入阅读。此代码遵循BSD开源协议。
详细中文介绍文档
面对智能音箱市场,许多人或许会质疑我们的团队为何要涉足这个领域。然而,故事并非如此简单。在年,我们计划为一个大型展厅打造讲解机器人,采用流行于Android系统的接待引导机器人,其语音交互功能本无问题,但当时的挑战在于,尚未有集成cartographer在数千平米展厅中进行建图导航的方案。因此,我们决定打造一款完全基于ROS的讲解机器人。市场上虽然有众多智能音箱,但缺乏适用于ROS二次开发的产品。在科大讯飞一位大佬的介绍下,我们选择了AIUI方案,虽然开发难度大,但高度定制化,非常适合我们这样的开发团队。于是,我们主要任务转变为开发一款能够在ROS下驱动的智能音箱,ROSECHO便由此诞生。
第一版智能音箱在年4月问世,包含W的大喇叭、6环麦克风,以及ROS主控制器,下方控制了一个云迹科技的jshop源码水滴底盘。了解过ROS星火计划进阶课程的朋友大概知道,课程中的大作业之一是语音命令移动机器人端茶倒水,而我们的任务相当于完成了一个加强版的大作业。
整个机器人在年7月完成,音箱分散到身体各个部分,环麦位于头顶,喇叭置于身体两侧。其他传感器、执行机构、决策、定位导航均基于ROS,定制了条特定问答,调试的机器人在场馆中行走上下坡不抖动,定位准确,7*小时工作稳定。音箱在大机器人上使用效果出色,主要得益于讯飞的降噪和回声消除技术,使得远场对话和全双工对话得以实现。社区中许多小伙伴也尝试了软核解决方案,但由于环境限制较大。于是,我们决定将音箱从大家伙改为普通智能音箱大小,通电即为智能音箱,USB接入ROS后,只需启动launch,即可接收语音识别结果,发送TTS语料,配置网络、接收唤醒角度等。
这次体验深刻地让我认识到,做大容易做小难。过完春节后,年8月ROS暑期夏令营期间,我们做了N款外壳,测试了M种喇叭,贴了P版外围电路,程序则改动不大。主要是由于时间有限,无法进行更多改进。样品均为手工制作,音质上,7w的喇叭配有一个无源辐射板,对于从森海HD入门的人来说,音质虽有瑕疵,但足以满足日常使用。
之前在想法中发布了一个使用视频,大家可参考运行效果。
ROSECHO基本情况介绍完毕,如何开始呢?
从零开始:推荐给手中已有讯飞AIUI评估板的小伙伴,记住,评估板而非麦克风降噪板(外观相似,简单区分是评估板售价元,降噪板元)。手头的评估板可通过3.5mm接口连接普通电脑音箱,再准备一根USB转转换头连接评估板DB9接口。后面需要根据实际串口修改udev规则,理论上可配合ROSECHO软件使用。硬件工作量较大,还需包含移动机器人所需机械设计、电气改造等。好处是拥有AIUI后台,可以定制云端语料和技能,但这又是另一个领域的能力,也不是三下五除二能完成的。
从ROSECHO开始:直接购买ROSECHO,首发的十台会附赠ROS2GO,只需连接自带电源并用USB线连接电脑,配置无线SSID和密码即可。连接方便,我们维护云端语料,人设为智能机器人管家,大家只需关注如何利用识别后的词句控制机器人和进行应答。云端问答AIUI处理,一些自定义问答可在本地程序中处理,务必联网,因为语音识别本身需要网络。具体软件启动和简单demo请查看GitHub软件库的说明。
然后做什么:要实现智能语音交互功能的移动机器人,需要对ROS中的actionlib非常熟悉。我们提供了简单的demo,可以控制机器人在turtlebot stage仿真环境中根据语音指令在两点之间移动,也可以根据唤醒方位进行旋转。之后还需增加音箱的TF变换。
大机器人中的状态机采用层次状态机(Hierarchical state machines),适用于移动机器人的编程,框架准备开源,方便大家开发自己的智能移动机器人策略。参考下面链接,希望深入了解也可以购买译本,肯定是比ROS By Example中的Smach状态机更适合商用级产品开发。
还计划做一套简单的语音遥控指令集,机器人问答库,在iflyos中构建适合机器人的技能库。何时能完成尚不确定,大家一起加油!
(二)教学级别无人车Tianracer
GitHub源码库已准备就绪,欢迎先star再深入阅读。遵循Hypha Racecar的GPLv3协议。
这是最近更新的详细使用手册。相比ROSECHO,Tianracer的基本功能均已完成,至少可以拿来学习建图导航,了解SLAM。
Tianracer是一个经过长时间准备的开源项目,年从林浩鋕手中接过Hypha Racecar后,希望将项目发扬光大。这两年改进了软件框架、周边硬件、机械结构,并增加了新的建图算法,但仍有大量工作待完成。这两个月在知乎想法和微信朋友圈分享了项目的进展,经历了多次迭代,现在大致分为入门、标准、高配三个版本。三个版本的软件统一,可通过环境变量更改设置。
最近整个项目从Tianbot Racecar更名为TianRacer,经过长时间探索,终于实现了合理的传感器与处理器配置。相比Hypha Racecar,处理器从Odroid XU4更改为NVIDIA在上半年推出的Jetson Nano,车前方增加了广角摄像头,利用Nano的深度学习加速,可以接近实时处理图像数据。相比之前的单线激光,广角摄像头大大扩展了后续可实现的功能。
TianRacer基本使用Python编写,从底层驱动到遥控等,目的是方便大家学习和二次开发。同时集成了cartographer和vins-fusion启动文件,可以尝试新的激光与视觉SLAM,基于Nano的深度学习物体识别等也是可以直接运行的。但目前功能尚未有机整合。
从零开始搭建:TianRacer搭建可能难度较大,不仅需要RC竞速车的老玩家进行机械电子改装,还需要对ROS熟悉并修改软件以进行适配,同时可能需要嵌入式程序员的帮助。对于主要关心搭建的朋友,可以参考小林的Hypha Racecar和JetRacer Tamiya版本的搭建指南。
从TianRacer开始:这批开发版本的无人竞速车附赠搭好环境的ROS2GO,TianRacer本身有开机自启功能,利用ROS2GO加上USB线对车体进行网络配置,就可以远程编程和调试。仔细参考提供的TianRacer看云文档(文档积极更新),大部分车体自带的功能都可以实现,包括但不限于建图、定位、导航、识别等。
然后做什么:利用TianRacer学习无人车的基础框架,还可以通过JupyterLab学习Jetson Nano的深度学习算法。未来计划将交通标识识别、行人和车辆检测、车道线检测等无人车基础功能融合,但不确定Jetson Nano的算力是否足够。目标是在校园内进行低成本的无人车竞速比赛,希望像CMU的Mobot室外巡线比赛一样持续发展,至今已举办届。
这个视频是搬运自YouTube。大家可深入了解非结构环境下的导航。对于不清楚结构化环境与非结构化环境的朋友,CMU和恩智浦的比赛完美诠释了两者之间的区别。
一起来玩耍吧!
在开源社区协作方面,我们也是第一次尝试,对于松散的协同开发经验不足,希望参与或组织过大型开源项目的朋友们加入我们,一起努力。有兴趣的朋友可以留言或私信。
前几日与朋友们闲聊时,想起几年前高翔博士赞助一锅粥(orb-ygz-slam)1万元时,我也只能提供支持。这次真心希望可以贡献出代码,实现实实在在的贡献。
年年底发布了开发者申请价格,但数量有限,早已连送带卖售罄。年又有几十位爱好者填写了问卷,忘记查阅。每年的双十一双十二我们都会有优惠活动,感谢大家的关注。
Cartographer源码详解|(2)Cartographer_ros
上一篇文章深入分析了传感器数据的流向,接下来让我们继续探讨传感器格式的转换与类型变换。这部分内容在sensor_bridge.cc文件中。在处理传感器的坐标变换时,我们需要运用三维空间刚体运动的知识,先进行简要回顾,以助于理解代码。
三维空间刚体运动涉及向量内积与外积。向量内积的计算公式如下,表示两个向量的点乘。向量外积则是一个向量,其方向垂直于两个向量,大小为两向量张成四边形的有向面积,计算公式如下。
旋转和平移是欧氏变换的两个关键部分。旋转涉及单位正交基的变换,形成旋转矩阵(Rotation matrix),该矩阵的各分量由两组基之间的内积组成,反映了旋转前后同一向量坐标的变化关系。平移则通过向旋转后的坐标中加入平移向量t实现。通过旋转矩阵R和平移向量t,我们可以完整描述欧氏空间中的坐标变换关系。
为了简化变换过程,引入齐次坐标和变换矩阵。在三维向量末尾添加1形成四维向量,进行线性变换。变换矩阵T能够将两次变换叠加简化为一个操作,便于后续计算。
Cartographer的坐标转换程序位于transform文件夹下的rigid_transform中,用于求解变换矩阵的逆。
在sensor_bridge类中,构造函数将传入配置参数,对里程计数据进行处理。首先将ros时间转换为ICU时间,然后利用tf_bridge_.LookupToTracking函数找到tracking坐标系与里程计child_frame_id之间的坐标变换。在ToOdometryData函数中,将里程计的footprint的pose转换为tracking_frame的pose,并最终将结果转换为carto::sensor::OdometryData的数据类型。
HandleOdometryMessage函数将传感器数据类型与坐标系转换完成后,调用trajectory_builder_->AddSensorData进行数据处理。对于雷达数据,首先转换为点云格式,然后对点云进行坐标变换,并调用trajectory_builder_->AddSensorData进行数据处理。
IMU数据处理中,要求平移分量小于1e-5,然后调用trajectory_builder_->AddSensorData对数据进行处理。
在雷达数据处理部分,首先将点云数据分段,然后传给HandleRangefinder处理,将点云坐标变换到tracking_frame坐标系下,调用trajectory_builder_->AddSensorData函数进行数据处理。
总结本章内容,我们详细解析了SensorBridge类,对传感器数据进行了转换和传输。通过Node类、MapBuilderBridge类和SensorBridge类,我们对Cartographer_ros部分的代码有了基本了解。接下来,我们将深入学习cartographer。
ROS2测试源码编译安装cartographer
Cartographer是一个跨平台、传感器配置提供实时同步定位和绘图(SLAM)的系统,具有回环检测优势,资源占用适中。
选择源码编译安装方式,以适应后期项目修改和移植需求。首先,使用Ubuntu虚拟机测试验证。
若国内访问github受限,可选择Gitee上的备份仓库进行下载。尝试多个版本,确认在Ubuntu humble版本下能够成功下载和安装。
在安装过程中,需要下载依赖项。在Ubuntu上,首先安装libabsl-dev、libceres-dev以及liblua5.3-dev等包。对于ceres-solver,需确保CUDA、显卡加速和TBB指令集优化选项已配置。
在开发板上,通过源码编译安装三方依赖。确保所有依赖包均正确安装,包括protobuf版本为v3.4.1分支。
完成所有依赖安装后,开始编译Cartographer源码。首先下载官方数据集,注意ROS2格式的rosbag转换,使用rosbags工具进行转换。
介绍ROSbag格式,ROS1的.rosbag文件为二进制存储格式,而ROS2使用SQLite数据库格式,支持跨平台和扩展性。两种格式转换方法,推荐使用rosbags工具,无需依赖ROS环境。
测试Cartographer时,使用ros2命令启动示例launch文件,输入特定的bag文件名以加载数据集。测试3D数据集时,使用相应的launch文件和bag文件名。
资源占用情况分析将后续进行。